Code No.: R22EC302PC

R22

H.T.No.

8 R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) - June- 2025 NETWORK ANALYSIS AND SYNTHESIS (ECE)

[Time: 3 Hours] [Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	<u>PART-A</u>	(20 Marks)
1. a)	Write about the relationship between twig & link.	[1M]
b)	What is a fundamental cut-set matrix?	[1M]
c)	Write the time constants of RL and RC networks.	[1M]
d)	Define Quality factor.	[1M]
e)	Define transfer admittance and impedance of a two port network.	[1M]
f)	What is an attenuator?	[1M]
g)	Differentiate between active and passive filters.	[1M]
h)	List the types of equalizer circuits.	[1M]
i)	List the properties of Hurwitz polynomial.	[1M]
j)	What do you mean by network synthesis?	[1M]
	PART-B	(50 Marks)

2. For the network shown in figure, write down the f-cutset matrix selecting twigs and obtain the network equilibrium equation in matrix form using KCL.

OR				
3.a)	Explain the dot convention with an example.	[5M]		
b)	Derive the expression for coefficient of coupling in coupled circuits.	[5M]		
4.a)	Deduce the transient response of source free series RL circuit.	[5 M]		
b)	Derive the expressions for quality factor and bandwidth of series and parallel			
	resonance circuits.	[5 M]		
OR				
5.	Obtain the transient response for the series RC network for DC excitation.	[10M]		
6.a)	Find y-parameters in terms of z-parameters.	[5M]		
b)	For a two port network, Y parameters are Y11=0.1 ohm. Y22=0.05ohm, Y12= Y21= -	[5M]		
	0.02ohm. Calculate the Z parameters of the network.			
OR				
7.a)	An admittance is given by $Y(s)=1/(s+2)$. Find the pole zero plot.	[5M]		
b)	Explain the significance of characteristic impedance.	[5M]		

8. Design a high pass filter having cutoff frequency of 1KHz with load resistance of [10M] 600ohms.

OR

- 9. Design a symmetrical bridged T- attenuator with an attenuation of 30 dB and [10M] terminated into a load of 500 Ohms.
- 10. Synthesize the given admittance function with 1- Ω termination [10M]

$$Y'_{21}(S) = \frac{S^2}{S^3 + 3S^2 + 3S + 2}$$

OR

11. Synthesize a network using Foster-I and Foster -II forms for the impedance function : $Z(s) = s(s^2 + 9) / \{(s^2 + 5)(s^2 + 13)\}$ ************