22/08/25

Code No.: R22CS58233PE

R22

H.T.No.

8 R

[10M]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I-M.TECH-II-Semester End Examinations (Supply) - March 2025 QUANTUM COMPUTING

(CSE)

Part B consists of 5 Units. Answer any one full question from each unit. Each question

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

[Time: 3 Hours]

Note: This question paper contains two parts A and B.

[Max. Marks: 60]

	carries 10 marks and may have a, b, c as sub questions.	
	PART-A	(10 Marks)
1. a)	Define Qubit.	[1M]
b)	Explain any one Quantum Logical Operation.	[1M]
c)	Give an example of Density Operator.	[1M]
d)	Write basics of Linear Algebra.	[1M]
e)	What is Bloch sphere?	[1M]
f)	What is the single Qubit gate?	[1M]
g)	Write name of two Quantum Algorithms.	[1M]
h)	Write difference between Deutsch's and Deutsch's-Jozsa algorithm.	[1M]
i)	What is graph states in Quantum Computing?	[1M]
j)	Discuss about Quantum Teleportation.	[1M]
	PART-B	(50 Marks)
2.	Explain briefly history of Quantum Computing. OR	[10M]
3.	Distinguish between Bits and Qubits in Quantum Computing.	[10M]
4.	Discuss about Genomics and Proteomics with example. OR	[10M]
5.	Explain Hilbert space with examples.	[10M]
6.	Demonstrate physical implementations of Qubit in Quantum Computing. OR	[10M]
7.	Design and discuss about single and multiple Qubit gates with examples.	[10M]
8.	Implement the basic steps of Deutsch's-Jozsa algorithm with an example. OR	[10M]
9.	Implement the basic steps of Shor's factorization algorithm with an example.	[10M]
10.	Discuss about Quantum Cryptography with example. OR	[10M]
		F1 03 47

11. Explain briefly Quantum Error Correction and Fault Tolerant Computation.
