Code No.: R22EC603PC

[Time: 3 Hours]

Note: This question paper contains two parts A and B.

R22 H.T.No.

8 R

[Max. Marks: 60]

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Regular) - June- 2025 VLSI DESIGN

(ECE)

	Part A is compulsory which carries 10 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question	
	carries 10 marks and may have a, b, c as sub questions.	
	<u>PART-A</u> (10	Marks)
1. a)	Mention remedies for latch-up effect.	[1M]
b)	Define self-aligning process in transistor fabrication.	[1M]
c)	How do you contact polysilicon with diffusion?	[1M]
d)	Mention λ -based design rules.	[1M]
e)	Sketch the circuit diagram of transmission gate.	[1M]
f) g)	Mention the advantages of dynamic gates. Compare SRAM and DRAM.	[1M] [1M]
h)	What is meant by Zero/One detector?	[1M]
i)	Define Standard Cells.	[1M]
j)	Write the Principle of Testing inVLSI.	[1M]
PART-B (50 Marks)		
2.a)	Explain why I_D becomes independent of V_{DS} (I _{DS} Vs V _{DS}) saturation.	[5M]
b)	The MOS transistor having V_{gs} =2.5V, V_t =0.5V, V_{ds} =2.5V and $\mu_n C_{ox} W/L$ =100 μ A/V ² . Find	[5M]
	the I_{ds} and determine the transistor operating region.	
	OR	5.63.63
3.a)	Determine the pull-up and pull-down ratio (Z_{pu}/Z_{pd}) for an NMOS inverter driven by another nMOS inverter.	[5M]
b)	Explain clearly about different operating regions in CMOS inverter with neat diagrams.	[5M]
4.	With relevant examples discuss the estimation of capacitance for the following (i) Sigle layer (ii) Multiple layers.	[10M]
_	OR	54.03.53
5.	Design a layout diagram for the following function in CMOS logic. $F = \overline{AB + C + D}$	[10M]
6.	How switch logic can be implemented using Pass Transistors and explain with an example. OR	[10M]
7.	Implement the following function using dynamic CMOS logic.	[10M]
,.	$F = \frac{AB + C(D + E)}{AB + C(D + E)}$	[202.2]
8.	Design an Arithmetic and Logic unit circuit with four functions by using full adder logic (Ripple Carry Adder).	[10M]
0 \	OR	[#3 4 7
9.a)	Examine the working principle of Booth's Multiplier with suitable example.	[5M]
b)	Describe the working operation of 1T DRAM cell.	[5M]

Compare CPLDs and FPGAs. [5M] Demonstrate the test principles with suitable examples. [5M] Implement the following functions using PAL $F_1(A, B, C, D) = \sum_{m} (0.2, 3, 4, 6, 8, 9, 10, 11, 13, 15)$ [5M] [5M]