7.

integrals.

Change the order of integration

R22 H.T.No.

8 1

R

CMR ENGINEERING COLLEGE: : HYDERABAD UGC AUTONOMOUS

I–B.TECH–II–Semester End Examinations (Regular) - June- 2025 VECTOR CALCULUS AND TRANSFORMS

(Common for all)

-		[arks: 60]
	This question paper contains two parts A and B. Part A is compulsory which carries 10 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each questions and may have a, b, c as sub questions.	stion
	PART-A	(10 Marks)
1. a)	Write the sufficient conditions for the existence of the Laplace transform of function.	a [1M]
b) c)	Define Unit Step function. Find $L^{-1}\left\{\frac{1}{m+1}\right\}$	[1M] [1M]
d) e) f) g) h) i)	State Convolution Theorem. Define Beta function. Define Gamma function. Define Gradient of Scalar Point function. Define Curl of a vector. Write any two applications of Line integrals. State Green's Theorem.	[1M] [1M] [1M] [1M] [1M] [1M]
2.a)	$\frac{\textbf{PART-B}}{\text{Evaluate L } \{t^2 \cos 3t\}}.$	(50 Marks) [5M]
b)	Evaluate L $\{e^{-4t}\int_0^t \frac{\sin 3t}{t} dt\}$.	[5M]
3.	OR Find L $\{f(t)\}$ where $f(t)$ is given by $f(t)=1$; $0 < t < 1$, and $f(t)=-1$; $1 < t < 2$. $(f(t)$ is periodic function with period 2).	a [10M]
4.a)	Find inverse Laplace transformation of	[5M]
b)	Solve the integral equation $y(t) = 1 + \int_0^t y(u) \sin(t - u) du$, Using Laplac Transform.	e [5M]
5.	Solve the differential equation (D ² +9) x=sint, Using Laplace transform give the $X(0)=1, X^{r}(0)=0$.	at [10M]
6.a)	Show that $\int_0^\infty x^4 e^{-x^2} dx = \frac{3\sqrt{\pi}}{8}.$	[5M]
b)	Evaluate $\int_0^2 (8-x^3)^{\frac{-1}{3}} dx$ by using $\beta - \Gamma$ function.	[5M]

 $\int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate of double

[10M]

- 8.a) Find the directional derivative of $xyz^2 + xz$ at (1, 1, 1) in the direction of normal to the surface $3xy^2 + y = z$ at (0, 1, 1).
 - b) Find the angle between the normal's to the surface $xy = z^2$ at the points (4, 1, 2) and [5M] (3, 3, -3).

OR

- 9. Show that the vector $(\mathbf{x}^2 \mathbf{yz}) \overrightarrow{\mathbf{i}} + (\mathbf{y}^2 \mathbf{zx}) \overrightarrow{\mathbf{j}} + (\mathbf{z}^2 \mathbf{xy}) \overrightarrow{\mathbf{k}}$ is irrotational and [10M] find its scalar potential.
- 10.a) Evaluate $\int_C y^2 dx 2x^2 dy$ along the parabola $y = x^2$ from (0,0) to (2,4). [5M]
 - b) Apply Gauss Divergence theorem, prove that $\int \bar{r} \cdot \bar{n} \, ds = 3V$. [5M]

OR

11. Verify Green's theorem for $\int (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where C is the [10M] closed curve enclosed by the region bounded by $y = \sqrt{x}$ and $y = x^2$.
