

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Supply) – December - 2025
APPLIED PHYSICS
(Common for ECE, CSE, IT)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a) What physical quantity does Planck's constant represent? [1M]
- b) What is electron effective mass? [1M]
- c) Name the specific mechanism responsible for reverse breakdown in a Zener diode. [1M]
- d) Why does LED emission color depend on bandgap? [1M]
- e) What is the primary function of a separator in a rechargeable battery? [1M]
- f) Why are liquid electrolytes used in batteries? [1M]
- g) What is the resolution limit of SEM? [1M]
- h) How does quantum confinement change band gap? [1M]
- i) Name the active medium and the pump source used in a Ruby laser. [1M]
- j) What is the primary cause of material dispersion in optical fibers? [1M]

PART-B

(50 Marks)

2. Discuss blackbody radiation, How did Planck's radiation law resolve the issues with classical theories? [10M]

OR

3. Using the Kronig-Penney model, explain the formation of allowed energy bands and forbidden band gaps in solids. How does the model account for the difference between conductors, semiconductors, and insulators? [10M]

4. Describe the principle of operation and characteristics of a Zener diode. [10M]

OR

5. Explain the construction, working, and characteristics of a BJT and mention few applications. [10M]

6. Distinguish soft and hard magnetic materials with examples and explain hysteresis loop. [10M]

OR

7. Explain the working principles and key performance metrics of rechargeable ion batteries. [10M]

8. Explain the principle and working of X-ray Diffraction (XRD) for nanomaterial characterization. [10M]

OR

9. Explain surface-to-volume ratio in nanomaterials. Describe ball milling (top-down) synthesis method. [10M]

10. Describe the construction and working principle of a He-Ne laser and mention few applications. [10M]

OR

11. Derive expressions for acceptance angle and numerical aperture in optical fibers. [10M]
