

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

I-B.TECH-I-Semester End Examinations (Supply) - December- 2025
BASIC ELECTRICAL ENGINEERING
(Common for CSC, CSD, CSE, IT)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

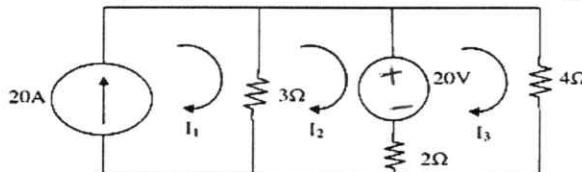
Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(20 Marks)

1. a) State ohms Law. [2M]
- b) State Kirchoff's current law. [2M]
- c) Define power factor. [2M]
- d) Show the sinusoidal waveform and label the peak value. [2M]
- e) Determine the efficiency of transformer when output is 450 W and total losses are 50 W. [2M]
- f) Compare ideal and practical transformer. [2M]
- g) Write the torque equation of DC motor. [2M]
- h) Give the function of commutator in DC generator. [2M]
- i) Define slip. [2M]
- j) Name the parts of an alternator. [2M]


PART-B

(50 Marks)

2. Derive the time domain analysis of RL circuit with DC excitation. [10M]

OR

3. Determine the loop currents I_1, I_2, I_3 in the circuit shown below using KVL. [10M]

4. Derive the expression for RMS value and average value of an alternating voltage wave $v = V_m \sin \omega t$. [10M]

OR

5. An inductive coil consisting of a resistance of 3.1Ω and an inductance of 0.04 H is connected in parallel with a non inductive resistor of 15Ω across $240 \text{ V}, 50 \text{ Hz}$ supply. Solve for the i) Current in each branch, ii) Power absorbed by the inductive coil, iii) Total current drawn from the supply and iv) overall Power factor of the circuit. [10M]

6. In a $25 \text{ kVA}, 2000/200 \text{ V}$, single-phase transformer, the iron and full-load copper losses are 350 and 400 W respectively. Determine the efficiency on [10M]

- (i) half full-load at UPF
- (ii) full load at 0.8 pf lagging.

OR

7. Explain the three phase transformer connections with neat sketch. [10M]

8. Explain about the construction and working of DC machine with neat diagrams. [10M]

OR

9. Discuss the different types of DC generators with suitable diagrams. [10M]

10. Explain the importance of torque – slip characteristics of a 3-phase induction motor with [10M]
a neat sketch.

OR

11. Explain the working of an alternator with neat sketch. [10M]
