

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Supply) - December- 2025
COMPILER DESIGN
(Common for CSE, IT, CSC, CSD)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(20 Marks)

1. a) List out the six phases of the compiler. [2M]
- b) Differentiate between Lexeme and token. [2M]
- c) Explain conflicts in shift reduce parsing. [2M]
- d) Define goto function in LR parser with an example? [2M]
- e) Define syntax tree? Draw the syntax tree for the assignment statement. $a := b * -c + b * -c$. [2M]
- f) Show the DAG for $a := b * -c + b * -c$? [2M]
- g) What do you mean by machine dependent and machine independent optimization? [2M]
- h) Explain the role of code generator in a compiler? [2M]
- i) Define the term copy propagation? [2M]
- j) Mention the issues to be considered while applying the techniques for code Optimization? [2M]

PART-B

(50 Marks)

2. For the following expression Position:=initial+ rate*60 Write down the output after each phase of compiler. [10M]

OR

3. Construct Deterministic Finite Automata to accept the regular expression : $(0+1)^* (00+11) (0+1)^*$ [10M]
4. Consider the grammar $E \rightarrow E + E | E * E | (E) | id$ Show the sequence of moves made by the shift-reduce parser on the input $id1+id2*id3$ and determine whether the given string is accepted by the parser or not. [10M]

OR

5. Prepare a canonical parsing table for the grammar given below $S \rightarrow CC$ $C \rightarrow cC | d$. [10M]
- 6.a) Write a note on the specification of a simple type checker. [5M]
- b) Define a type expression? Explain the equivalence of type expressions with an appropriate example. [5M]

OR

7. Write quadruples, triples and indirect triples for the expression: $-(a*b)+(c+d)-(a+b+c+d)$ [10M]
8. Write a short note on: a. Flow graph (with example) b. Dominators c. Natural loops d. Inner loops e. Reducible flow graphs. [10M]

OR

9. Demonstrate code generation algorithm in detail. [10M]
10. Explain Local optimization and loop optimization in detail. [10M]

OR

11. Explain how loop invariant computation can be eliminated? Explain how “Redundant sub-expression eliminates” can be done in a given program? [10M]
