

			8	R							
--	--	--	---	---	--	--	--	--	--	--	--

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Supply) -December- 2025

COMPUTER ORIENTED STATISTICAL METHODS

(CSE)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a) Describe discrete and continuous random variables. [1M]
- b) Write Conditions of discrete probability distribution. [1M]
- c) The mean and variance of a binomial distribution are 2 and 8/5. Determine n value. [1M]
- d) Write the condition of binomial distribution. [1M]
- e) A sample of size 10 was taken from a population S.D of sample is 0.3. Find the maximum error with 99% confidence. [1M]
- f) State Central limit theorem. [1M]
- g) Discuss the Type –I error and Type –II error. [1M]
- h) Explain the procedure for testing of hypothesis. [1M]
- i) Define Markov chain. [1M]
- j) Explain periodic and aperiodic states. [1M]

PART-B

(50 Marks)

2. The Probability density function of a variate x is

X	0	1	2	3	4	5	6
P(X)	K	3K	5K	7K	9K	11K	13K

- (i) Find k value (ii) $p(X < 4)$, $P(X \geq 5)$,
- (ii) $P(3 < X < 6)$
- (iii) What will be the minimum value of k so that $P(x < 2) > 0.3$

OR

3. A continuous random variable has the probability density function

[10M]

$$f(x) = \begin{cases} k x e^{-\lambda x}, & \text{for } x \geq 0, \lambda > 0 \\ 0, & \text{otherwise} \end{cases}$$

Determine (i) K (ii) Mean (iii) Variance

- 4.a) Two dice are thrown five times. Find the probability of getting 7 as sum (i) at least once (ii) exactly two times (iii) $P(1 < X < 5)$.
- b) A coin is biased in a way that a head is twice as likely to occur as a tail. If the coin is tossed 3 times find the probability of getting 2 tails and 1 head.

OR

5. Derive the mean and variance of binomial distribution.

[10M]

6. In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 2.5. [10M]
 Assuming the distribution to be normal find
 i) How many students score between 12 and 15.
 ii) How many score above 18.
 iii) How many score below 18.

OR

7.a) In a normal distribution 31% of the items are under 45 and 8% are over 64. Find the mean and variance of the distribution. [5M]

b) A sample of size 10 was taken from a population S.D. of sample is 0.03. Find the maximum error with 99 % confidence. [5M]

8.a) A sample of 400 items is taken from a population whose standard deviation is 10. The mean of the sample is 40. Test whether the sample has come from a population with mean 38. Also calculate 95% confidence interval for the population. [5M]

b) The mean and standard deviation of a population are 11795 and 14054 respectively. If $n=50$, Find 95 % confidence interval for the mean. [5M]

OR

9.a) In a big city 325 men out of 600 men were found to be smokers. Does this information support the conclusion that the majority of men in this city are smokers? [5M]

b) A die is tossed 960 times and it falls with 5 upwards 184 times. Is the die unbiased at a level of significance of 0.01. [5M]

10. The one step T.P.M. of Markov chain $\{x_n : n = 0, 1, 2, \dots\}$ having state space $\{1, 2, 3\}$ is [10M]

$$P = \begin{bmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{bmatrix} \text{ and initial distribution } P_0 = (0.7, 0.2, 0.1). \text{ Find}$$

$$(i) P(x_2 = 3 | x_0 = 1) \quad (ii) P(x_2 = 3) \quad (iii) P(x_3 = 2, x_2 = 3, x_1 = 3, x_0 = 1)$$

OR

11. Check whether the following Markov chain is 'regular and ergodic'. [10M]

$$P = \begin{bmatrix} 1 & 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 1/2 & 1/2 \end{bmatrix}$$
