

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

IV-B.TECH-I-Semester End Examinations (Regular) - December- 2025
DEEP LEARNING
(CSC)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a)	Define Perceptron.	[1M]
b)	State any two uses of Semi Supervised Learning in real life.	[1M]
c)	Define Fixed Weight Competitive Net.	[1M]
d)	What is meant by Adaptive Resonance Theory (ART)?	[1M]
e)	What is the main purpose of the output layer in a feed-forward network?	[1M]
f)	State the purpose of the gradient descent algorithm.	[1M]
g)	What is meant by parameter norm penalty?	[1M]
h)	Why is data augmentation used during training?	[1M]
i)	What is the advantage of Adam optimizer?	[1M]
j)	List the names of second-order methods.	[1M]

PART-B

(50 Marks)

2. Explain how Supervised Learning Networks differ from Unsupervised Learning Networks in Artificial Neural Networks (ANN) and basic models of ANN. [10M]

OR

3. Describe the architecture and working principle of a Bidirectional Associative Memory (BAM) network. [10M]

4. Discuss the architecture and working principle of a Maxnet with the help of a neat diagram. [10M]

OR

5. Explain the structure and functioning of a Kohonen Self-Organizing Feature Map and discuss the applications of Deep Learning. [10M]

6. Demonstrate how Gradient-Based Learning is applied in neural networks and explain the use of gradient descent in training them. [10M]

OR

7. Analyze the role of Hidden Units and Hidden Layers in enhancing the performance of deep learning models and backpropagation algorithm. [10M]

8. Apply your understanding to explain Parameter Norm Penalties and demonstrate how L1 and L2 regularizations function with suitable examples. [10M]

OR

9. Demonstrate your understanding by writing short notes on:

a)	Tangent Distance and Tangent Propagation	[5M]
b)	Manifold Learning	[5M]

10. Explain various optimization strategies and meta-algorithms used for efficient model training. [10M]

OR

11. Describe the role of optimization in Computer Vision, Speech Recognition, and Natural Language Processing with suitable examples. [10M]
