

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

IV-B.TECH-I-Semester End Examinations (Regular) - December- 2025
DEEP LEARNING
(CSM)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a) Give one example for each of supervised and unsupervised learning algorithms. [1M]
- b) What is feature engineering? [1M]
- c) How can norm penalties be interpreted as a constrained optimization problem? [1M]
- d) Name one common parameter initialization strategy. [1M]
- e) Give one real-world example where convolution is used in deep learning. [1M]
- f) How can unsupervised learning be used to learn convolutional features? [1M]
- g) What is meant by “unfolding” a recurrent neural network in time? [1M]
- h) What is explicit memory in neural networks? [1M]
- i) Why is it important to compare a new model against a baseline? [1M]
- j) Give one example of deep learning applied in recommendation systems. [1M]

PART-B

(50 Marks)

2. Describe k-Nearest Neighbors (k-NN) algorithm and its applications in supervised learning. [10M]

OR

3. Explain backpropagation algorithm for training a neural network. [10M]

4. Explain how early stopping can prevent overfitting and improve generalization with a training graph. [10M]

OR

5. Discuss the importance of parameter initialization and describe common initialization strategies. [10M]

6. Discuss the implications of this prior on model design and generalization performance in image recognition tasks. [10M]

OR

7. Explain methods for efficient computation of convolutions in deep learning. [10M]

8. Discuss applications such as machine translation and speech recognition, and explain how variable-length input and output sequences are handled. [10M]

OR

9. Explain the architecture of an LSTM cell with a diagram. [10M]

10. Discuss one method for systematically identifying and fixing problems in a neural network's training process (practical methodology). [10M]

OR

11. Explain how deep learning is applied to speech recognition. Include examples of architectures such as RNNs, LSTMs, or Transformer-based models. [10M]
