

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

II-B.TECH-II-Semester End Examinations (Supply) - December- 2025

DESIGN ANALYSIS OF ALGORITHMS

(CSM)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(20 Marks)

1. a)	What is an algorithm?	[2M]
b)	Define space complexity?	[2M]
c)	Demonstrate Disjoint set operations?	[2M]
d)	What is sum of subsets problem?	[2M]
e)	Define dynamic programming?	[2M]
f)	What is optimal binary search tree?	[2M]
g)	Define Feasible solution?	[2M]
h)	What is Knapsack Problem?	[2M]
i)	Describe Bounding function?	[2M]
j)	State the Cooks Theorem.	[2M]

PART-B

(50 Marks)

2. Define Time complexity. Describe asymptotic notations Big Oh (O), Omega (Ω) and Theta (Θ) notations and show their behavior using graphical representation. [10M]

OR

3. Simulate Quick sort algorithm for the following example. [10M]
 25,36,12,4,5,16,58,54,24,16,9,65,78

4. Explain briefly about 4-queens problem with backtrack solution and explain with example. [10M]

OR

5. Discuss union and find algorithms in detail with suitable example. [10M]

6. Define merging and purging rules in 0/1 knapsack problem. [10M]

OR

7. State the Job Sequencing with deadlines problem. Find an optimal job sequence to the $n = 5$ Jobs where profits (P_1, P_2, P_3, P_4, P_5) = (20, 15, 10, 5, 1) and deadlines (d_1, d_2, d_3, d_4, d_5) = (2, 2, 1, 3, 3). [10M]

8. What is Minimum cost spanning tree? Explain an algorithm for generating minimum cost Spanning tree and list some applications of it. [10M]

OR

9. State the Greedy Knapsack? Write the algorithm for Greedy knapsack and also compute the time complexity. [10M]

10. Solve the Travelling Salesman problem using branch and bound algorithms for the [10M] following cost matrix.

	1	2	3	4
1	0	4	1	3
2	4	0	2	1
3	1	2	0	5
4	3	1	5	0

OR

11. Discuss in detail about the class P, NP, NP-hard and NP-complete problems. Give [10M] examples for each class.
