

			8	R					
--	--	--	---	---	--	--	--	--	--

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS
II-B.TECH-I-Semester End Examinations (Supply) - December- 2025
DIGITAL LOGIC DESIGN
(CSD)

[Time: 3 Hours]**[Max. Marks: 70]****Note:** This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A**(20 Marks)**

1. a) Convert the $(7BD)_{16}$ hexadecimal number to decimal. [2M]
- b) Prove that $x+x'y=x+y$. [2M]
- c) Reduce the Boolean expression $f(x, y, z)=\sum m(1, 3, 5, 7)$. [2M]
- d) Draw the logic diagram of EXOR using NOR gate. [2M]
- e) Compare combinational and sequential circuits. [2M]
- f) Design 4X1 MUX. [2M]
- g) How to avoid race around condition? [2M]
- h) Compare synchronous and asynchronous counters. [2M]
- i) Explain the random-access memory. [2M]
- j) Explain the programmable array logic. [2M]

PART-B**(50 Marks)**

2. Convert the $(776)_8$ octal number to decimal and also binary number. [10M]
- Subtract $(7B)_{16}$ from $(C4)_{16}$ using 2s complements method.

OR

3. Convert the following Boolean expression into canonical SOP and POS for [10M] $F(X, Y, Z)=Y'+ZX'+X'Y+Z$.

4. Simplify the following Boolean expression using K Map. [10M]
- $F(A, B, C, D)=\sum m(0, 1, 4, 5, 8, 9, 13, 15)$.
- $F(A, B, C, D)=\sum m(1, 3, 4, 9, 13)+\emptyset(2, 6, 12)$.

OR

5. Reduce the Boolean expression using K-map and implement expression in NAND gates $F(A, B, C, D)=\sum m(1, 3, 5, 9, 11)+\emptyset(2, 4, 8)$. [10M]

6. Design a full adder. [10M]

OR

7. Design Half adder using NAND Gates. [10M]

8. Explain the T flip flop with characteristic table and excitation table. [10M]

OR

9. Design synchronous 3bit counter using JK Flip Flop. [10M]

10. Explain the Programmable Logic Array. [10M]

OR

11. Explain the memory decoding. [10M]
