

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Supply) - December- 2025
DIGITAL SIGNAL PROCESSING
(ECE)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a)	Define linear shift invariant system.	[1M]
b)	Define causal system and non causal system.	[1M]
c)	Write the formula for N point IDFT.	[1M]
d)	Why FFT is preferred to DFT?	[1M]
e)	What are the disadvantages of impulse invariant method?	[1M]
f)	What are the properties of bilinear transformation?	[1M]
g)	Write the important features of IIR filters.	[1M]
h)	What are finite word-length effects?	[1M]
i)	What are the applications of Digital signal processor?	[1M]
j)	Define sampling theorem	[1M]

PART-B

(50 Marks)

2.	For the given system $y(n)=x(n)-2x(n-1)+x(n-2)$, determine the magnitude and phase response.	[10M]
OR		
3.a)	Verify the system $y(n) = 2 / [x(n) + 3]$ for its linearity time invariance, causality and stability.	[5M]
b)	Obtain the frequency response of the system; $Y(n) = -2y(n-1) + 3 y(n-2) + 4 x(n)$ and plot.	[5M]
4.	Find the 8-point DFT of the following Sequences by using DIT radix -2 FFT algorithm: $x(n) = \{1,1,1,1,0,0,0,0\}$.	[10M]
OR		
5.	Find the DFT of the Sequence $x(n)$ defined by $x(n) = 1$ for $2 \leq n \leq 6 = 0$ for $n = 0, 1$ and 7. Use DIF radix-2 FFT algorithm. Give all intermediate results.	[10M]
6.	Design a Butterworth IIR low pass filter with the following specifications: passband ripple $\alpha_p = 1$ dB, stop band attenuation $\alpha_s = 40$ dB, pass band edge frequency is 2 KHz, stop band edge frequency 10 KHz, Sampling frequency is 25 KHz. Use the bilinear transformation technique.	[10M]
OR		
7.	Design a Chebyshev filter with $\alpha_p = 2.5$ dB, $\Omega_p = 20$ rad/sec, $\alpha_s = 30$ dB, $\Omega_s = 50$ rad/sec.	[10M]
8.	Design an ideal LPF, whose response is $H_d(e^{j\omega}) = e^{j3\omega}$ $0 \leq \omega \leq \pi / 3$ $= 0$ otherwise.	[10M]
Using a rectangular window, $N=5$		
OR		
9.a)	Compare IIR and FIR filters.	[5M]
b)	What is an aliasing effect?	[5M]
10.a)	Explain the spectrum of down sampling.	[5M]
b)	Write the applications of multi rate signal processing.	[5M]
OR		
11.a)	Draw and explain the spectrum of a down sampler used in decimator.	[5M]
b)	State and prove identities used in Multirate signal processing related to decimator.	[5M]
