

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS
II-B.TECH-I-Semester End Examinations (Supply) - December- 2025
DIGITAL SYSTEM DESIGN
(ECE)

[Time: 3 Hours]**[Max. Marks: 70]****Note:** This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A**(20 Marks)**

- | | | |
|-------|---|------|
| 1. a) | Convert the Gray coded number 1011010111001 in to Binary. | [2M] |
| b) | How can you get the Boolean equations from the truth table? | [2M] |
| c) | Describe the importance of don't care conditions. | [2M] |
| d) | What is drawing back in binary parallel adder? How can it be rectified? | [2M] |
| e) | What is meant by race around condition in flip flop? | [2M] |
| f) | Mention some important applications of shift registers. | [2M] |
| g) | What is a PLA? Describe its uses. | [2M] |
| h) | Describe the basic functions of ROM. | [2M] |
| i) | Realize AND gate using NMOS and PMOS transistors. | [2M] |
| j) | Define Propagation delay. | [2M] |

PART-B**(50 Marks)**

- | | | |
|-----------|---|-------|
| 2. | How hamming codes locate the error? Explain with an example. | [10M] |
| OR | | |
| 3. | What is Boolean algebra? How it is different from ordinary algebra and write the advantages of minimizing Boolean function using Boolean algebra. | [10M] |
| 4. | Minimize the following function using K-Map.
$F(w,x,y,z) = \Sigma m(0,1,2,3,4,6,8,9,10)$ | [10M] |
| OR | | |
| 5. | Design 4-bit BCD to XS-3 code converter. | [10M] |
| 6. | Explain the operation of JK Master slave flip flop. | [10M] |
| OR | | |
| 7. | What is a shift register? Explain different types of shift registers with functional diagrams. | [10M] |
| 8. | Derive the state table and state diagram for a serial adder. | [10M] |
| OR | | |
| 9. | Compare three combinational circuits PLA, PAL and ROM. | [10M] |
| 10. | Explain in detail about CMOS Logic families with examples. | [10M] |
| OR | | |
| 11. | Explain the following specifications (i) Fan out (ii)Noise margin | [10M] |
