

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Regular) - December- 2025

DISCRETE MATHEMATICS

(Common for CSE, CSM)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A **(10 Marks)**

1. a) Write the negation of the statement, "If the processor is fast then the printer is slow." [1M]
- b) Show that for two propositions p and q where $(p \text{ XOR } q) \vee (p \leftrightarrow q)$ is a tautology [1M]
- c) Describe Transitive relation. [1M]
- d) How to find the transitive closure of a relation R? [1M]
- e) Define permutations. [1M]
- f) Define algebraic system with example. [1M]
- g) Define combinations. [1M]
- h) Define the well-ordering principle. [1M]
- i) Difference between a directed and undirected graph. [1M]
- j) Define planar graphs. [1M]

PART-B **(50 Marks)**

2. Prove that $((p \rightarrow r) \wedge (q \rightarrow r)) \rightarrow [(p \vee q) \rightarrow r]$ is a Tautology. [10M]

OR

3. For three propositions p, q and r prove that $[(p \vee q) \rightarrow r] \Leftrightarrow [(p \rightarrow r) \wedge (q \rightarrow r)]$. [10M]

4. Let $A = \{1, 2, 3, 4, 5\}$ and $P = \{A \times A\}$. R is a relation set such that $(x, y) \in R \iff (x_1, y_1) \leftrightarrow xy_1 = x_1y$. Show that R is an equivalence relation. Compute A/R. [10M]

OR

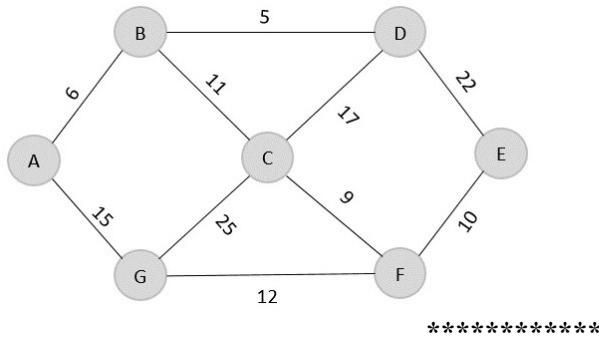
5. With examples differentiate symmetric and anti-symmetric relations. [10M]

6. Prove that a group G is abelian if $(a * b)^{-1} = a^{-1} * b^{-1}$ for all a, b belongs to G. [10M]

OR

- 7.a) Explain Groups and types of Groups with examples. [5M]
- b) Explain semi groups and monoides. [5M]

8. Solve in a class of 52 students, 30 are studying C++, 28 are studying Pascal and 13 are studying both Languages. How many in this class are studying at least one of these languages? [10M]


OR

9. Describe the Binomial theorem with an example. [10M]

10. What is a planar graph? Draw a planar graph of order 5, 8, 6, 12, if possible. [10M]

OR

11. Write algorithm for Kruskal's algorithm. Find minimum spanning tree using [10M]
Kruskal's algorithms for following graph?

