

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

III-B.TECH-I-Semester End Examinations (Supply) – December 2025
ELECTROMAGNETIC FIELDS AND WAVES
(ECE)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks.

PART-A

(20 Marks)

1. a)	Define Continuity equation. Write equation in point form.	[2M]
b)	State Coulomb Law in electrostatics.	[2M]
c)	If a point charge is place in E&B fields, calculate 'F' on a Charge Particle?	[2M]
d)	State the point form of Ampere's circuital law	[2M]
e)	Write Lorentz force equation	[2M]
f)	Explain briefly Lorentz condition for potentials.	[2M]
g)	State Poynting Theorem.	[2M]
h)	Define uniform plane wave and state its properties.	[2M]
i)	What are Dominant and Degenerate modes in Rectangular Wave Guide.	[2M]
j)	Mention the Applications of Micro strip lines.	[2M]

PART-B

(50 Marks)

2.	Write short notes on Rectangular, cylindrical and spherical coordinate systems.	[10M]
OR		
3.	Derive the electric field boundary conditions between dielectric and conductor?	[10M]
4.a.	State and prove Ampere's Force law.	[5M]
b.	Using Ampere's circuit Law, find H due to an infinite sheet of current.	[5M]

OR

5.a.	A filamentary current of 15A is directed in from infinity to the origin on the positive x axis and then back out to infinity along the position yaxis. Use the Biot-Savart's law of find H at P (0, 0, 1)?	[5M]
b.	Find the magnetic field intensity at centre of a square of sides equal to 5m and carrying a current equal to 10 A.	[5M]

6.a.	Explain (i) Conduction Current. (ii) Displacement current.	[5M]
b.	Derive the Maxwell's four equations for time varying fields	[5M]
OR		
7.a.	Derive the boundary conditions for a dielectric – conductor interface for magnetic fields.	[5M]
b.	A dielectric sphere of $\epsilon_r = 5.7$ and of radius 10 cm has a point charge $2\mu\text{c}$ placed at its centre. Calculate the surface density of polarization charge on the surface of the sphere.	[5M]

8.a. Write short Notes on Total internal reflection [5M]
b. A plane wave having a frequency of 10MHz has an average Poynting vector of 1W/m^2 . If the medium is lossless with relative permeability 2 and relative permittivity 3, find the velocity of propagation, Wavelength, impedance of medium and rms value of the electric field. [5M]

OR

9.a. Define Brewster angle and derive an expression for Brewster angle when a wave is parallel polarized. [5M]
b. For good dielectrics derive the expressions for α , β , γ and η . [5M]

10. Explain in detail about the wave guide parameters in Rectangular waveguide and derive its equations. [10M]

OR

11. Derive the wave equation for a TE wave and obtain all the field components in a rectangular wave guides. [10M]
