

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

I-B.TECH-I-Semester End Examinations (Regular) - December - 2025
ELECTRONIC DEVICES AND CIRCUITS
(CSE)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a) What is the function of a capacitor filter in a rectifier circuit? [2M]
- b) Classify the Transistors with Symbols [2M]
- c) Write the Amplification factors of Three Configurations [2M]
- d) Define stability factor. [2M]
- e) Write the Applications of LED [2M]

PART-B

(50 Marks)

2. Explain with the help of a neat circuit diagram and waveform how a positive and negative clamper works. [10M]

OR

3. Describe the construction and operation of a Bridge Full wave rectifier with a neat circuit diagram and waveform. And Derive expressions for the Full wave ripple factor. [10M]
4. Define the hybrid (h) parameters of a transistor. Write the four h-parameters for the CB, CE, and CC configuration with h-parameter equivalent circuit. [10M]

OR

5. Describe the input and output characteristics of a BJT in CE configuration with neat sketches. Compare CB, CE, and CC configurations [10M]
6. Explain what is meant by thermal runaway in a transistor. What are its causes and how can it be prevented? [10M]

OR

7. Define stability factor (S). Derive an expression for the stability factor for a Fixed Bias circuit. [10M]
8. Using h-parameters, derive expressions for voltage gain, input, and output resistances of CE and CC amplifier. [10M]

OR

9. Explain the Principle and operation of Varactor Diode, SCR, Tunnel Diode [10M]
10. Describe the structure and operation of an N-channel Enhancement-mode MOSFET. [10M]

OR

11. With neat diagrams, explain fixed bias and self-bias techniques used for FETs. Compare their performance in terms of stability factor. [10M]
