

			8	R					
--	--	--	---	---	--	--	--	--	--

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

I-B.TECH-I-Semester End Examinations (Regular) - December - 2025
MATRICES AND CALCULUS
(Common for ECE, CSM & CSD)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a) Find the value(s) of k such that Rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{bmatrix}$ is 2. [2M]

b) If λ is an Eigen value of a matrix A corresponding to the Eigen vector X then prove that λ^2 is an Eigen value of a matrix A^2 corresponding to the eigenvector X . [2M]

c) Write the geometrical interpretation of Rolle's theorem. [2M]

d) If $x = r \cos \theta$, $y = r \sin \theta$ then find $\frac{\partial x}{\partial \theta}$ and $\frac{\partial \theta}{\partial x}$. [2M]

e) Evaluate $\int_0^{a \sqrt{a^2-x^2}} \int_0^x \sqrt{a^2 - x^2 - y^2} dy dx$. [2M]

PART-B

(50 Marks)

[10M]

2. Find the rank of the matrix, by reducing into the normal form $\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$.

OR

3. Solve the following system of equations by Gauss -Seidal iteration method correct to three decimal places $8x - 3y + 2z = 20$, $4x + 11y - z = 33$, $6x + 3y + 12z = 35$ [10M]

4. Verify the Cayley Hamilton theorem and find A^{-1} for $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$. [10M]

OR

5. Reduce the quadratic form $2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2zx$ to the canonical form by an orthogonal transformation. [10M]

6.a) Verify Rolle's theorem for the function $(x-a)^m(x-b)^n$ where $m, n > 0$ in $[a, b]$. [5M]
 b) Obtain the Taylor's series expansion of $\sin 2x$ in powers of $x - \frac{\pi}{4}$. [5M]

OR

7. State Lagrange's mean value theorem. If $a < b$ prove that [10M]

$\frac{b-a}{1+b^2} < \tan^{-1} b - \tan^{-1} a < \frac{b-a}{1+a^2}$ using Lagrange's mean value theorem. Deduce the following

$$(i) \frac{\pi}{4} + \frac{3}{25} < \tan^{-1} \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$$

$$(ii) \frac{\pi}{4} + \frac{1}{5} < \tan^{-1} 2 < \frac{\pi}{4} + \frac{1}{2}$$

8. Verify Euler's theorem for $u = x^2 \tan^{-1} \left(\frac{y}{x} \right) - y^2 \tan^{-1} \left(\frac{x}{y} \right)$ and prove that [10M]

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$$

OR

9. A rectangular box open at the top is to have volume of 32 cubic ft. find the dimensions of the box requiring least material for the construction. [10M]

10. By changing the order of integration, evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dx \, dy$ [10M]

OR

11. Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} \, dz \, dy \, dx$ [10M]
