

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

IV-B.TECH-I-Semester End Examinations (Regular) - December- 2025
PREDICTIVE ANALYTICS
(CSD)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a)	Define ridge regression and mention when it is used.	[1M]
b)	Define logistic regression.	[1M]
c)	What is the bias-variance trade-off?	[1M]
d)	What is the purpose of bootstrapping?	[1M]
e)	What is gradient boosting?	[1M]
f)	Define AdaBoost.	[1M]
g)	Define the concept of backpropagation.	[1M]
h)	Define is K-nearest neighbor classifier.	[1M]
i)	Define unsupervised learning.	[1M]
j)	List the applications of association rule mining.	[1M]

PART-B

(50 Marks)

2.a)	How does LDA differ from logistic regression for classification?	[5M]
b)	Analyze the effect of regularization parameters in Lasso and Ridge regression.	[5M]
OR		
3.a)	What is Lasso regression and Ridge regression? Explain.	[5M]
b)	Derive the cost function of logistic regression.	[5M]
4.	Demonstrate K-fold cross-validation algorithm with an example.	[10M]
OR		
5. a)	Derive the relationship between bias, variance, and mean squared error.	[5M]
b)	How can effective number of parameters be used in model selection?	[5M]
6. a)	Discuss bagging and boosting techniques.	[5M]
b)	Illustrate the use of additive models for nonlinear relationships.	[5M]
OR		
7.	Compare additive models, regression trees, and boosting in predicting newzealand fish size data.	[10M]
8.	Illustrate the working of KNN with a numerical example.	[10M]
OR		
9. a)	Compare SVM and neural networks for classification tasks.	[5M]
b)	Write the issues related to overfitting in neural networks.	[5M]
10.	Discuss how random forests handle missing data and feature correlation with suitable examples.	[10M]
OR		
11. a)	Write the hierarchical clustering and its linkage methods.	[5M]
b)	Compare random forests with decision trees.	[5M]
