

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Supply) - December- 2025
PROBABILITY AND STATISTICS & COMPLEX VARIABLES
(MECH)

[Time: 3 Hours]

[Max. Marks: 70]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 20 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(20 Marks)

1. a) Define Conditional Probability give one example. [2M]
- b) Verify whether the function $f(x) = \begin{cases} e^{-x}, & x \geq 0 \\ 0, & x < 0 \end{cases}$ is probability density function. [2M]
- c) Determine the binomial distribution for which the mean is 4 and variance 3. [2M]
- d) Write the formula for the probability density functions of Exponential and Normal distributions. [2M]
- e) Define type -I and Type -II errors. [2M]
- f) Among 900 people in a state 90 are found to be chapatti eaters. Construct 99% confidence interval for the true proportion. [2M]
- g) Find the value of k if $f(x, y) = x^3 + 3kxy^2$ is harmonic function. [2M]
- h) Find all the roots of the equation $\sin z = \cos z$. [2M]
- i) Expand e^z as a Taylor's series about $z = 1$. [2M]
- j) Find the fixed points of the transformation $w = \frac{2z-1}{z+2}$. [2M]

PART-B

(50 Marks)

- 2.a) State and prove Baye's Theorem. [5M]
- b) A bag A contains 2 white and 3 red balls and a bag B contains 4 white and 5 red balls. One ball is drawn at random from the bags it is found to be red. Find the probability that the red ball drawn is from bag B. [5M]

OR

3. a) Is $f(x) = \frac{1}{2}x^2 e^{-x}$ when $x \geq 0$ can be regarded as a probability function for a continuous random variable? If, so find Mean and Variance of the random variable. [5M]
- b) A random variable X has the following probability function [5M]

x	0	1	2	3	4	5	6	7
$P(X = x)$	0	K	$2K$	$2K$	$3K$	K^2	$2K^2$	$7K^2 + K$

i) Find K (ii) mean of X.

4. Four Coins are tossed 160 times. The number of times x heads occur is given below. [10M]

x	0	1	2	3	4
f	8	34	69	43	6

Fit a binomial distribution to this data on the hypothesis that the coins are unbiased.

OR

5.a) In a normal distribution, 31% of items are under 45 and 8% are over 64. Find the mean and variance of the distribution. [5M]

b) Show that the mean and variance of a Poisson distribution are equal. [5M]

6. Two independent samples of 8 and 7 items respectively had weights in ounces as given below. Is the difference between means of the sample significant? [10M]

Sample-1	9	11	13	11	15	9	12	14
sample-2	10	12	10	14	9	8	10	--

OR

7. In a city A 20% of a random sample of 900 school boys had a certain physical defect. In another city B 18.5% of a random sample of 1600 school boys had the same defect. Is the difference between the proportions significant? [10M]

8. Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) |\operatorname{Re} \operatorname{alf}(z)|^2 = 2|f'(z)|^2$ where $W = f(z)$ is analytic function. [10M]

OR

9.a) If $u = e^x \left[(x^2 - y^2) \cos y - 2xy \sin y \right]$ is real part of an analytic function, find the analytic function. [5M]

b) If u is harmonic function, show that $w = u^2$ is not a harmonic. [5M]

10.a) Verify Cauchy's theorem for the function $f(z) = 3z^2 + iz - 4$ if C is the square with vertices $1 \pm i$ and $-1 \pm i$. [5M]

b) Evaluate $\int (2y + x^2) dx + (3x - y) dy$ along the parabola $x = 2t, y = t^2 + 3$ from the point $(0,3)$ to the point $(2,4)$. [5M]

OR

11. Find the Laurent's series expansion for $f(z) = \frac{z+3}{z(z-2)(z-1)}$ in the region (i) $|z| < 1$ (ii) $1 < |z| < 2$ (iii) $|z| > 2$. [10M]
