

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

II-B.TECH-I-Semester End Examinations (Regular) - December- 2025
SIGNALS AND SYSTEMS
(ECE)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a)	Define even signal and odd signal with example.	[1M]
b)	Sketch the waveform of $y(t) = r(t - 5)$.	[1M]
c)	State Dirichlet's conditions for existence of Fourier transform.	[1M]
d)	State and prove linearity property of Fourier transform.	[1M]
e)	Define signal bandwidth and system bandwidth.	[1M]
f)	What is the system transfer function of LTI systems?	[1M]
g)	Compare the stability with poles and zeros in the Laplace transform and Z-transform.	[1M]
h)	Obtain the Z-transform of $x(n) = u(n-1)$.	[1M]
i)	Calculate the Nyquist's frequency of the signal $x(t) = 2\cos(10\pi t) + 15\sin(800\pi t)$.	[1M]
j)	Formulate Parsevals Theorem for Fourier series.	[1M]

PART-B

(50 Marks)

2.a)	Explain the orthogonality between two signals $f_1(t)$ and $f_2(t)$ and derive the approximation coefficient C_{12} .	[5M]
b)	Show that the following signals $f_1(t) = \sin(nwt)$ and $f_2(t) = \cos(mwt)$ are orthogonal over an interval $[0, 2\pi]$.	[5M]

OR

3.	Define Ramp signal and sketch the waveforms of $y(t) = r(t + 1) - r(t) + r(t - 2)$.	[10M]
4.	Derive the trigonometric Fourier series coefficients a_0, a_n, b_n .	[10M]

OR

5.	State and prove any five properties of Fourier Transform.	[10M]
----	---	-------

6.	Consider an LTI system with impulse response $h(t) = e^{-2t} U(t)$. Find the response of the system to an input signal $x(t) = \sin(3t)U(t)$.	[10M]
----	--	-------

OR

7.	Find the convolution of two functions and represent them graphically. $x(t) = 2$ for $-2 \leq t \leq 2$ and $h(t) = 4$ for $0 \leq t \leq 2$.	[10M]
----	---	-------

8.	Find the inverse Laplace transforms of the function $H(s) = (s+1) / (s^2 + 3s + 2)$.	[10M]
----	---	-------

OR

9.	Using Scaling property determine the Z-transform of $x(n) = a^n \cos(wn)u(n)$ and find its ROC.	[10M]
----	---	-------

10.	State and prove sampling theorem for band limited signal with suitable diagrams.	[10M]
-----	--	-------

OR

11.	Discuss the relationship between Autocorrelation Function and Power Spectral Density Function with mathematical expressions.	[10M]
-----	--	-------
