

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

III-B.TECH-II-Semester End Examinations (Supply) - December- 2025
VLSI DESIGN
(ECE)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a)	Define MOS transistor figure of merit.	[1M]
b)	List the advantages of BiCMOS.	[1M]
c)	Define stick diagram.	[1M]
d)	What is meant by scaling factor?	[1M]
e)	Mention the advantages of transmission gate.	[1M]
f)	Define fan in of CMOS logic gate.	[1M]
g)	Write the sum expression for 2-bit adder.	[1M]
h)	Draw a DRAM memory cell.	[1M]
i)	Define programmable logic array.	[1M]
j)	What is meant by stuck at 1 fault?	[1M]

PART-B

(50 Marks)

2. Derive the drain to source current (I_{ds}) and drain to source voltage(V_{ds}) expression for n-MOS transistor. [10M]

OR

3. Describe the operation and transfer characteristics of n-MOS inverter. [10M]

4. Derive supply voltage, channel width, channel length, gate oxide thickness, and gate area and gate capacitance using constant electric field scaling. [10M]

OR

5. Draw a layout diagram CMOS inverter and 2 inputs CMOS NAND gate with lambda values. [10M]

6. Discuss inverting and non-inverting type n-MOS super buffer with neat sketches. [10M]

OR

7.a) Implement $Y = AB+C$ using pass transistors. [5M]
 b) Implement $Y = A+B$ using Transmission gate. [5M]

8. Design a serial multiplier with neat diagrams. [10M]

OR

9. Explain the operation of 6T SRAM memory cell. [10M]

10. Discuss in detail about chip level design techniques. [10M]

OR

11. Explain in detail about FPGA architectures. [10M]
