

			8	R					
--	--	--	---	---	--	--	--	--	--

CMR ENGINEERING COLLEGE: : HYDERABAD
UGC AUTONOMOUS

I-B.TECH-II-Semester End Examinations (Supply) – December - 2025
VECTOR CALCULUS AND TRANSFORMS
(Common for all)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(10 Marks)

1. a) Find $L(5 \sin t + 2 \sin 3t)$. [1M]
- b) Find the Laplace transform of $e^{-3t} \sin 2t$. [1M]
- c) Find the inverse Laplace transform of $\frac{1}{(s+a)(s+b)}$. [1M]
- d) Find $L^{-1} \left\{ \frac{s^2-3s+4}{s^3} \right\}$. [1M]
- e) Find $\beta \left(\frac{3}{2}, \frac{1}{2} \right)$. [1M]
- f) Compute $\Gamma \left(-\frac{1}{2} \right)$. [1M]
- g) Define divergence of vector point function. [1M]
- h) Prove that $\bar{F} = yz\bar{i} + zx\bar{j} + xy\bar{k}$ is irrotational vector. [1M]
- i) Define line integral. [1M]
- j) State Gauss divergence theorem of transformation between surface integral and volume integral. [1M]

PART-B

(50 Marks)

- 2.a) Find the Laplace transform of $e^{4t} (\sin^3 3t + \cosh^3 3t)$. [5M]
- b) Find $L(t \cos^2 3t)$. [5M]

OR

- 3.a) Find the Laplace transform of $\frac{\cos at - \cos bt}{t}$. [5M]
- b) Evaluate $L \left(e^{-2t} \int_0^t t \sin t dt \right)$. [5M]
4. Find inverse Laplace transform of the function $\frac{s^2}{(s^2+a^2)^2}$ using convolution theorem. [10M]

OR

5. Solve $\frac{d^3y}{dt^3} + 2 \frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0$, where $y = 1, \frac{dy}{dt} = 2, \frac{d^2y}{dt^2} = 2$ at $t=0$, using Laplace transform method. [10M]

6. To prove $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. [10M]

OR

7. Express the integral $\int_0^1 x^m (1-x^n)^p dx$ in terms of gamma function and [10M]

hence $\int_0^1 x^{3/2} (1-x^{1/2})^{1/2} dx$.

8. Find constants a, b, c so that the vector $\bar{A} = (x + 2y + az)\bar{i} + (bx - 3y - z)\bar{j} + (4x + cy + 2z)\bar{k}$ is irrotational. Also find ϕ such that $\bar{A} = \nabla\phi$. [10M]

OR

9. Prove that $\nabla \times (\nabla \times \bar{a}) = \nabla(\nabla \cdot \bar{a}) - \nabla^2 \bar{a}$. [10M]

10. Verify Green's theorem in the plane for $\int_C (x^2 - xy^3)dx + (y^2 - 2xy)dy$ where C is a square with vertices $(0,0), (2,0), (2,2), (0,2)$. [10M]

OR

11. Verify Stokes theorem for $\bar{F} = (y - z + 2)\bar{i} + (yz + 4)\bar{j} - xz\bar{k}$ where S is the surface of the cube $x = 0, y = 0, z = 0$ and $x = 2, y = 2, z = 2$ above the xy -plane. [10M]
