8 R	8R 8R 8R 8R	88	_8R	(
8 R	Code No: 134AM JAWAHARLAL NEHRU TECHNOLOGICAL UNIVER B. Tech II Year II Semester Examinations, Ap CONTROL SYSTEMS (Common to EEE, ECE, EIE) Time: 3 Hours	ril - 2018	R16 ABAD Marks: 75	Same Strange
	Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer Part B consists of 5 Units. Answer any one full Each question carries 10 marks and may have a, b, c as sub q	question from		
8R 8R	1.a) Write the Manson's gain formula. b) What are the basic properties of SFG? c) What are the standard test signals used in control systems? d) Distinguish between type and order of a system. e) Define a stable system. f) Explain the basics of root locus plot. g) What is polar plot?	8R 8R	(25 Marks) [2] [3] [2] [3] [2] [3] [2] [2] [2] [3] [2]	
8R	h) Define gain and phase margins. i) What is state diagram? j) Mention any four advantages of state variable representation. PART-B 2.a) Compare the AC and DC servomotors. b) For the system represented by the block diagram shown in fig.	8R	[3] [2] [3] (50 Marks) [4+6]	
8R	Solve a system represented by the clock diagram shown in H_2 . $R = \{ G_1 \} + \{ G_2 \} $ $H_1 = \{ G_2 \} + \{ G_3 \} $		8R	
88	SR SR SR SR SR	8R	8R	{
8R	8R 8R 8R	88	8R	

88	b) Find the s	state transition ma	atrix for the follo	iii) State space wing matrix, $A = 0$	$\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}.$	88	
8R	$\ddot{y} + 5\dot{y} + 7$ Where 'y The state \dot{X}	$7y = 114$ ' is the output an equation of a line $X = \begin{bmatrix} 0 & 5 \\ -1 & -2 \end{bmatrix} X + \frac{1}{3} X +$	d 'u' is the input. OR ear-time invarian $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ r and $y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	t system is given $1]X$,			ξ.
88		ransfer function		8 7	8.	[10] 3 -	2
8R	8	88	8 R	88	82	88	ξ,
8 - -	87	SR	8 <u>P</u>	8.	8.	88	2
8R		8.7	88		87	87	ξ
88	8 R	88	8R	88	87	8R	{
25	22	SP	22	20	22	90	5