Code No: 09A40404

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year II Semester Examinations, June-2014 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES (Common to ECE, ETM)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) State and Explain Coulombs law.

- b) Three point charges Q1: 0.5nC, Q2: 0.4nC, Q3: -0.6nC are located in free space at (0, 0), (3, 0) and (0, 4) respectively. Determine the potential, electric field intensity and flux density at (3, 4).
- 2.a) Determine the amount of work necessary to assemble three point charges Q1, Q2 and Q3 in an empty space. Extend your result to n-point charges.
 - b) The electric field intensity in the atmosphere at the earth surface is 200V/m and 20V/m at 1400m above the earth surface directed downwards. What is the average charge density in the atmosphere below 1400 m?
- 3.a) Determine the value of Magnetic flux density at the center of a square filament of side 'a' carrying current I.
 - b) A toroidal ring has 200 turns. The outer diameter of the ring is 15cm with the inner diameter of 12cm. Find the flux density if the current is 8A.
- 4.a) Two loss less mediums $1(\mu_1, \epsilon_1)$ and $2(\mu_2, \epsilon_2)$ are separated by a plane. A wave is normally incident from plane1. Use Maxwell's equations to find the boundary conditions.
 - b) Let μ = 3×10⁻⁵ h/m, ϵ = 1.2×10⁻¹⁰ F/m and σ =0 everywhere, If H=2cos(10¹⁰t- β x)a_z A/m. Use Maxwell's Equation to find β .
- 5.a) Derive the equation for uniform plane wave in free space condition.
 - b) The electric field in free space is given by $E=50 \cos(10^8 t + \beta x) a_y V/m$. Find the direction of wave propagation. Calculate β and the time it takes to travel a distance of $\lambda/2$.
- 6.a) Discuss the significance of pointing theorem and derive the equation for pointing vector.
 - b) A vertically polarized uniform plane wave is incident at an angle of 45^0 from air on a dielectric slab of $\epsilon_r=4,~\mu_r=1$ and $\sigma=0.$ The incident field strength is 100 mV/m at 10 MHz. Calculate the power transmitted to the dielectric slab; Find the angle of incidence for which angle of reflection is zero.
- 7.a) Obtain the expression for input impedance of transmission line.
 - b) A $\lambda/2$ section of a 600 Ω transmission line short circuited at one end and open circuited at other end. A 100V/75 Ω generator is connected at the midpoint of the section. Find the voltage at the open circuit end of the line.
- 8.a) Briefly explain about stubs and impedance matching by use of stubs.
 - b) A Load of 100+j180 Ω is connected to a 75 Ω lossless line. Find γ , S and Z_{in} at the generator using smith chart.