Code No: 115DQ MA.ET ## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD AR. FT ar. Mi ## B.Tech III Year I Semester Examinations, February/March - 2016 ANTENNAS AND WAVE PROPAGATION (Electronics and Communication Engineering) | Ti | me: 3 hours | AND THE PROPERTY OF | FET BELFIT | | | | Max. Mark | s: 75 | Sic » Mi | |--|---|---|----------------------------------|----------------------------|-----------------------------|---|---------------------|------------|-------------------| | No | te: This quest
Part A is | compulsory | which carrie | s 25 mark | s. Answer | all question | ons in Part A | | | | \$4 - R1 | Part B co | onsists of∈5 | Units Ans | wer any o | ne full qu | estion fro | om each uni | k-Si | #R - 21 | | , | Each quest | tion carries i | 0 marks and r | nay nave a, | o, c as suo | questions | | | | | Markey - Factor | | HOW THE STREET THE | | Part- A | | EN UN OFF | 25 M | arks) | eni - de c | | 1.a | | m efficiency | | | | | | [2] | | | b | - | · · · | ed wave trave | ling in the | positive z | direction | in air has x a | ind y | :* , | | | $ \begin{array}{c} \text{component} \\ \text{Ex} = 3 \sin \end{array} $ | (ωt - βx) | $(V m^2)$ | | | | | AND STREET | | | | | $(\omega t - \beta x + 75^{\circ})$ | | | withe wave | A . | | [3] | | | | Find the av | erage power | per unit area | antenna N | ny me wayt
Nasi-Et | | | 2) Hi | MQ - M4 | | A CONTRACTOR OF THE | | | ennas required | | 200 | * * | | [3] | | | | | | s of microstrip | | | | | [2] | | | o de la companya l |) List differe | nt types of r | | | | \$R = 111 | | [3] | | | £ | " ^_ | | of array of anto | ennas. 🔪 | | | | [2]
[3] | | | i | | iygen's princ | r relation bety | wêen MUF | ,
and skip di | stance. | | [2] | | | 25 7.j | | roughness | factor at 3M | /
Hz for an | earth havi | ing o ∓ 0 | .5, with $\theta =$ | 30°. | 615 . U.S | | Mar | Calculate t | he ratio of r | oughness fact | ors for the | same earth | and same | e θ if frequer | cy is | | | • | doubled. | | | | | | | [3] | | | | | | | Part-B | | Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Militar
Milita | (50 M | arks) | di - III | | 2.a) | Show that t | he Radiation | resistance of | $\lambda/2$ antenn | a is 73Ω . | | | | | | b | Obtain the distance of | relative an
2λ-from a\sl | plitudes of r
fort current el | adiation, in
ement havi | nduction and
ng an unifo | nd electro
orm curren | t of 1mA alo | ng its | | | | length. | | | OB | | | * * . | [5+5] | | | | osti | liation radiate | ince of loops. | OR | | \$10 × 151 | | io Fig | | | 3.a)
b) | A plane wa | uauon resisu
ve is inciden | it on a short d | | | | | | 5,000 E 51 (L. 8) | | 0) | in the v dir | ection. The | current on the | dipole is a | ssumed co | nstant and | in the same | phase | | | acinima singuilli
Nacinima singuilli | over its ent | ire length, a | nd the termin
the antenna lo | ating resist | ance R_T is | assumed e | equal to the d | ipole | | | The same of the same | (i) the dipo | sisiance R _r .
les's maximu | ime affective a | perture and | l (ii) its dire | ectivity? | | [5+5] | | | 4.a) | With neat | illustrations,
to axial mod | explain the ee, and give th | geometry a | ınd require
lesign relat | ments for | a helical an | tenna | AT . FT | | b) | . | e requireme | nts, performa | ince charac | teristics ar | nd applicat | tions of Yagi | -Uda | | | -/ | Antenna. | | | 4 | | Terra | | [5+5] | | | | | with the s | M1 . ##=E1 | OR. | | | | | 8M.R1 | | 5 | | | | | f Pyramida
acteristics a | | | | [5+5] | 24 - F | |----------------|------------------|----------------------|--------------|---------------|---|---|----------------------------|-------------------------|--|--| | 6. | b) Estir | nate the c | urvature p | rofile for a | c lens anter
a parabolic
ngth to Dia | reflector | antenna, ai | nd hence o | define the
[5+5] | Prince Section | | | b) Calc | ulate and | plot the ra | diation pa | OR
tor design.
ttern of λ/2 | dipole ar | ntenna spa | ced 0.15 7 | from an | district Street | | | patte | rns in ga | in over a | λ/2 dipo | nna loss re
le antenna | in free | L = 0.12 a space with | na 312. Ex
n the san | apress the power | | | 594 - F | input | . Assume | zero loss r | esistance. | | NAME OF BRIDE | 925 - 274
1925 - 27, 1 | MARKET AN STREET | [5+5] | ar - Fi | | 8. | • | he princip | le of patter | n multiplic | cation and o | lraw the ra | diation par | tern with | 8 element | | | | o) Expla | | sources of | | ntenna meas
OR | | | 512 - 514 | [5+5] | | | 9.8 | • | a neat blo
tenna: | | | the method | of measu | | · · · · · · | pattern of | | | ł |) For a | 16 eleme | nt Broadsi | de array v | vith λ/2 spa
vel, directi | icing, deriv | ve the arra
fective are | y factor a
a. | nd hence [5+5] | | | | b) Deriv | e an expre | ession for | the variation | pheric scatt
on of field
happens wl | strength o | f a space | wave with | antenna
[5+5] | WE TO SE | | 11. | the co | rrespondin | ng frequenc | cies of pro | OR
structure an
pagation. | | | | | | | est - Fi | b) Explai | in the corgation. | ncept of | reduction | factor and | | | | nd wave | 12. 1MA | | WAR WATER BY | | | | | | COMPANY AND | | | | The Water Street, and the Stre | | | THE WAY | | | | | | | ROBERT OF COUNTY | | | | | | (A | | 0 | 0000 | | | | | | | | | | | V #2 - P: | | | | After a on Tall is | | | | | STATES OF STATES | | | | ्रेड हैं के किया है जिल्हा के किया है जिल्हा
के के के किया किया है जिल्हा के किया है | | | a Na | THE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO COLU | THE RESERVE TO SERVE AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND | | | | | | | | • | | | | | | | | | | | | And the second | | 期 4 清省 | | 57 . - 7.7 | | • • | • | | | | | | | | | | | \$FL = FLT | 201 = [5:1 | | | | | | 87.51 | | er. Fi | \$14 o 141 - | | | | | | | | : | | | • | • | | | | | | | | | anger — Programme anger a | | | |