JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech II Semester Examinations, February - 2017 JET PROPULSION AND ROCKET ENGINEERING (Thermal Engineering) **Time: 3hrs** Max.Marks:75 Note: This question paper contains two parts A and B Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART - A * * * * 5×5 Marks = 25 1.a)What are the forces acting on vehicle? Explain. [5] What is trust coefficient? Explain. b) [5] What is meant by Equivalent ratio? Explain. c) [5] d): List out different types of injectors and its applications. e). Write the advantages and disadvantages of ramjet engine.

PART - B

 5×10 Marks = 50

[5]

R15

.....

....

2.a): Explain with neat sketche the working of a simple constant pressure open cycle gas

In a closed cycle gas turbine the working fluid at 40°C compressed with an adiabatic b) efficiency of 0.82. It is then heated at constant pressure to 1000K, the fluid is then expands down to initial pressure in a turbine with an adiabatic efficiency of 0.85. After expansion fluid is cooled to 40°C, for a pressure ratio, of 4. Calculate the work done and cycle efficiency. The working fluid is air having $C_p = 1.01$ kJ/kgK and $\gamma = 1.38$ [5+5]

- OR 3.a) What are the advantages and disadvantages of a closed gas turbine over open cycle gas
- turbine? What are the desirable properties of working fluid suitable for closed cycle operation? ...Discuss the methods of improving the specific output and thermal efficiency of the
- simple open cycle gas turbine plant. **** 5+51
- Explain the essential differences between rocket propulsion and turbojet propulsion. 4.a)
 - What is the importance of specific impulse in rocket engines? b) [5+5]

OR

5.A rocket nozzle has a throat area of 18 cm² and combustion chamber pressure of 25 bar. If the specific impulse is 127.42 sec and weight flow rate 44.145 N/s. Determine a) Thrust coefficient b) Propellant weight flow coefficient c) Specific propellant consumption d) Characteristic velocity. [10]

.....

Code No: 5221AU

* * * *

* * * * *

* ***

* * **

*** * * ** * * * * * * * * * *

The leaving velocity is 1750 km/hr from a jet and inlet velocity is 88 km/hr. The specific fuel consumption is 12 kg/hr for each kg of thrust. Fuel of 42385 kl/kg lower heating value is used. For 2000 kg thrust, compute the air flow in kg/sec. Also calculate the probable propulsion and thermal efficiencies and finally determine the overall efficiency of this unit. [10]

OR

7 Give the classification of S	Solid propellant	rocket.engines	and explain hor	nogeneous and
	* * ** * *	0	• • • •	0
heterogenediis propellants	**** ***	****	···· · · · · · ·	FILL 101
: ·.·fictorogeneous.propenants.	• * * × × * • •	* * * * *	* * *****	: •, •,•[10]

- 8.a) Compare liquid propellant rocket engine with solid propellant rocket engine.
 - b) Give the classification of liquid propellant rocket engines.

[5+5]

.....

.....*

- OR
- 9.a),What are different applications of solid propellant rocket engines?.
- b). With the help of a neat diagram, explain the working of a liquid bi-propellant rocket engine. [5+5]
- 10. A ramjet engine operates at M=1.5 at an altitude of 6500 m. The diameter of the inlet diffuser at entry is 50 cm and the stagnation temperature at the nozzle entry is 1600 K.
 For air (γ = 1.4; R = 287 J/kgK). The velocity of air at the diffuser exit is negligible. Calculate (a) the efficiency of ideal cycle (b) flight speed (c) air flow rate (d) diffuser
 - pressure ratio (e) fuel air ratio (f) nozzle pressure ratio. (g) nozzle jet mach number, (h) propulsive efficiency and (i) thrust. Assume the following values $\eta_D = 0.9$, $\eta_s = 0.98$, $\eta_j = 0.96$, stagnation pressures loss in the combustion chamber = $0.02 P_{02}$. [10]

OR

11... Briefly explain the air intakes and their classification of ramjet propulsion system. [10]

00000									
RØ	RØ		RØ		RØ	**** * * * ** * *			
Re									
				R D					

.

* * * *

* * * *

* * * *

* * * *

* * * *

6.