Code No: 123AC. JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, March - 2017 MECHANICS OF SOLIDS

* * * * *

*** * * ** ** * * * * * * *

Q.

(Common to ME, MCT, MMT, AE, AME, MSNT)

Time: 3 Hours		Max	. Marks: 75
Note:	This question paper contains two parts A and B.	X • K X F K • X • K • K • K • K • K • • K • K • • K • • K • K • K	
	Part A is compulsory which carries 25 marks. Answer a	all questions in	Part A.
	Part B consists of 5 Units. Answer any one full question from each unit.		
	Each question carries 10 marks and may have a, b, c as	sub questions.	
	PART- A		(25 Marks)
1.a)	How shear deformation takes place.		[2]
b)	Differentiate compressive and crushing stress.		[3]
c)	What is the procedure adopted for calculating the shear	force at a sect	ion. [2]
d)	In which case, the SFD is parabolic and BMD is cubic.		[3]
e)	What is the section modulus of a rectangular and circul	ar sections?	[2]
f)	How the section modulus of a triangular section can be	increased.	[3]
b)	What are the various forces by which the monr's circle	is drawn.	[2]
n) i)	What is the torsion of a toporing shaft?		[3]
i)	How the cylinders are classified under thin and thick so	ations?	[2]
	List 1.4 List List List List List		
\$ ^*, *\$		* * * * * * * * * *	
			(50 arks)
2.	In a triaxial stress system, the six components of the str	ess at a point a	are :
	$\sigma_{xx}=6$ MPa, $\sigma_{yy}=5$ MPa $\sigma_{zz}=4$ MPa	ľ	
**** ***	$\tau_{xy} = \tau_{yx} = 1$ MPa, $\tau_{yz} = \tau_{zy} = 3$ MPa, $\tau_{zx} = \tau_{xz} = 2$ MPa.	**** ***	****
* *	Find the magnitude of the three principal stresses.	* * * * * * * * * * * * * * * * * * *	[10]
	OR		
3.	A hollow right circular cylinder is made of cast iron as	nd has an outs	ide diameter
	of 75 mm and an inside diameter of 60 mm. if the cyl	inder is loaded	d by an axial
	compressive force of 50 KN, determine the total short	ening in a 600) mm length.
****	Also determine the normal stress under this load. Take	the modulus of	f elasticity to
* * ****	be 100 GPa and neglect any possibility of lateral buckli	ng factor of th	e cylinder.
			[10]
X			
4.	A cantilever beam loaded by a concentrated load at the	e free end tog	gether with a
**** ***	uniform load distributed over the right half of the	beam. Plot th	e shear and
* * * * * * * * * * * * * * * * * * *	moment diagrams snown m itgure 1.	2 * X K 9 2 * * * 6 X * 6 X 6 11 11 11 11	
	₩ /Unit length		
	↓	M ₁	
		<u> </u>	
**** * * * * * * * * * * **** **** * * * * * * * * * * * *	B	/ <i>x</i>	

Figure: 1

V

OR Draw the shear force and bending moment diagrams for the beam shown in [10]figure 2.

5

 100 N/mm^2

Figure: 4