$\mathbf{R05}$

Code No: R05221801

II B.Tech II Semester Examinations,April/May 2012 MATHEMATICS - III Metallurgy And Material Technology urs Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Show that $\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$ where n is a positive interger and m>-1.
 - (b) Show that $\beta(\mathbf{m},\mathbf{n}) = \int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} dy.$

(c) Show that
$$\int_{0}^{\infty} x^4 e^{-x^2} dx = \frac{3\sqrt{\pi}}{8}.$$
 [6+5+5]

- 2. (a) Evaluate $\int_C \frac{\cos z \sin z}{(z + \pi/2)^3} dz$ with C = |z| = 2 using Cauchy's integral formula.
 - (b) Evaluate $\int_{1-i}^{2+i} (2x+1+iy)dz$ along (1-i) to (2+i) using Cauchy's integral formula. [8+8]

3. (a) Test for analyticity at the origin for
$$\begin{cases} f(z) = \begin{cases} \frac{x^{r}y(y-ix)}{x^{6}+y^{2}} & for \ z \neq 0\\ 0 & for \ z = 0 \end{cases}$$
(b) Find all values of z which satisfy (i) $e^{z} = 1+i$ (ii) $\sin z = 2.$
[8+8]

- (a) Expand as a Taylor series in f(z) = ^{2z³+1}/_{z²+1} about z=1.
 (b) Express f(z) = ^z/_{(z-1)(z-3)} in a series of positive and negative powers of (z-1). [8+8]
- 5. (a) Prove that $\int x J_0^2 dx = \frac{1}{2} x^2 (J_0^2 + J_1^2) + C.$ (b) $P_n(x) = P'_{n+1} - 2x P'_n(x) + P'_{n-1}(x)$ [8+8]
- 6. (a) Find the poles and residue at each pole of the function $\frac{2z+1}{(1-z^4)}$.
 - (b) Evaluate $\int_C \frac{\sin z}{z \cos z} dz$, where C is $|z| = \pi$, by residue theorem. [8+8]
- 7. (a) Find the bilinear transformation which maps the points z=1,-1,0 into the points 1,0,i.
 - (b) Show that the straight lines in the z-plane passing through the origin are mapped into straight lines in the w-plane under the transformation $w=z^2$.

8. (a) Show that $\int_{0}^{\pi} \frac{Cos2\theta}{1-2aCos\theta+a^2} = \frac{\pi a^2}{\sqrt{1-a^2}}$, (a² < 1) using residue theorem.

$\mathbf{R05}$

Set No. 2

(b) Show by the method of contour integration that $\int_{0}^{\infty} \frac{Cosmx}{(a^{2}+x^{2})^{2}} dx = \frac{\pi}{4a^{3}}(1+ma)e^{-ma},$ (a > 0 , b > 0). [8+8]

 $\mathbf{R05}$

[8+8]

Code No: R05221801

II B.Tech II Semester Examinations, April/May 2012 MATHEMATICS - III Metallurgy And Material Technology Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Prove that $\int x J_0^2 dx = \frac{1}{2} x^2 (J_0^2 + J_1^2) + C.$ (b) $P_n(x) = P'_{n+1} - 2x P'_n(x) + P'_{n-1}(x)$ [8+8]
- 2. (a) Show that $\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$ where n is a positive interger and m>-1.
 - (b) Show that $\beta(\mathbf{m},\mathbf{n}) = \int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} dy.$ (c) Show that $\int_{0}^{\infty} x^4 e^{-x^2} dx = \frac{3\sqrt{\pi}}{8}$. [6+5+5]
- (a) Expand as a Taylor series in $f(z) = \frac{2z^3 + 1}{z^2 + 1}$ about z=1. 3. (b) Express $f(z) = \frac{z}{(z-1)(z-3)}$ in a series of positive and negative powers of (z-1).
- (a) Evaluate $\int_{C} \frac{\cos z \sin z}{(z + \pi/2)^3} dz$ with C = |z| = 2 using Cauchy's integral formula. 4.
 - (b) Evaluate $\int_{1-i}^{2+i} (2x+1+iy)dz$ along (1-i) to (2+i) using Cauchy's integral for-[8+8]
- (a) Find the poles and residue at each pole of the function $\frac{2z+1}{(1-z^4)}$. 5.
 - (b) Evaluate $\int_C \frac{\sin z}{z \cos z} dz$, where C is $|z| = \pi$, by residue theorem. [8+8]
- (a) Test for analyticity at the origin for $f(z) = \begin{cases} \frac{x^3y(y-ix)}{x^6+y^2} & \text{for } z \neq 0\\ 0 & \text{for } z = 0 \end{cases}$ 6.
 - (b) Find all values of z which satisfy (i) $e^z = 1+i$ (ii) sinz =2. [8+8]
- 7. (a) Find the bilinear transformation which maps the points z=1,-1,0 into the points 1,0,i.
 - (b) Show that the straight lines in the z-plane passing through the origin are mapped into straight lines in the w-plane under the transformation $w=z^2$. [8+8]

8. (a) Show that
$$\int_{0}^{\pi} \frac{Cos2\theta}{1-2aCos\theta+a^2} = \frac{\pi a^2}{\sqrt{1-a^2}}$$
, (a² < 1) using residue theorem.

$\mathbf{R05}$

Set No. 4

(b) Show by the method of contour integration that $\int_{0}^{\infty} \frac{Cosmx}{(a^{2}+x^{2})^{2}} dx = \frac{\pi}{4a^{3}}(1+ma)e^{-ma},$ (a > 0, b > 0).[8+8]

Code No: R05221801

 $\mathbf{R05}$

II B.Tech II Semester Examinations, April/May 2012 MATHEMATICS - III Metallurgy And Material Technology urs Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks ****

1. (a) Show that $\int_{0}^{\pi} \frac{Cos2\theta}{1-2aCos\theta+a^2} = \frac{\pi a^2}{\sqrt{1-a^2}}$, (a² < 1) using residue theorem.

(b) Show by the method of contour integration that $\int_{0}^{\infty} \frac{Cosmx}{(a^{2}+x^{2})^{2}} dx = \frac{\pi}{4a^{3}}(1+ma)e^{-ma},$ (a > 0 , b > 0). [8+8]

2. (a) Prove that
$$\int x J_0^2 dx = \frac{1}{2} x^2 (J_0^2 + J_1^2) + C.$$

(b) $P_n(x) = P'_{n+1} - 2x P'_n(x) + P'_{n-1}(x)$ [8+8]

- 3. (a) Find the poles and residue at each pole of the function $\frac{2z+1}{(1-z^4)}$.
 - (b) Evaluate $\int_C \frac{\sin z}{z \cos z} dz$, where C is $|z| = \pi$, by residue theorem. [8+8]

4. (a) Evaluate
$$\int_C \frac{\cos z - \sin z}{(z + \pi/2)^3} dz$$
 with $C = |z| = 2$ using Cauchy's integral formula.

- (b) Evaluate $\int_{1-i}^{2+i} (2x+1+iy)dz$ along (1-i) to (2+i) using Cauchy's integral formula. [8+8]
- 5. (a) Show that $\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$ where n is a positive interger and m>-1.
 - (b) Show that $\beta(\mathbf{m},\mathbf{n}) = \int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} dy.$ (c) Show that $\int_{0}^{\infty} x^4 e^{-x^2} dx = \frac{3\sqrt{\pi}}{8}.$ [6+5+5]

6. (a) Test for analyticity at the origin for $f(z) = \begin{cases} \frac{x^3y(y-ix)}{x^6+y^2} & \text{for } z \neq 0\\ 0 & \text{for } z = 0 \end{cases}$

- (b) Find all values of z which satisfy (i) $e^z = 1+i$ (ii) sinz =2. [8+8]
- (a) Expand as a Taylor series in f(z) = ^{2z³+1}/_{z²+1} about z=1.
 (b) Express f(z) = ^z/_{(z-1)(z-3)} in a series of positive and negative powers of (z-1). [8+8]
- 8. (a) Find the bilinear transformation which maps the points z=1,-1,0 into the points 1,0,i.

R05

Set No. 1

(b) Show that the straight lines in the z-plane passing through the origin are mapped into straight lines in the w-plane under the transformation $w=z^2$. [8+8]

 $\mathbf{R05}$

Code No: R05221801

II B.Tech II Semester Examinations,April/May 2012 MATHEMATICS - III Metallurgy And Material Technology urs Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Show that $\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$ where n is a positive interger and m>-1. (b) Show that $\beta(m,n) = \int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} dy$. (c) Show that $\int_{0}^{\infty} x^{4} e^{-x^{2}} dx = \frac{3\sqrt{\pi}}{8}$. [6+5+5] 2. (a) Test for analyticity at the origin for $f(z) = \begin{cases} \frac{x^{3}y(y-ix)}{x^{6}+y^{2}} & \text{for } z \neq 0\\ 0 & \text{for } z = 0 \end{cases}$
- 2. (a) Test for analyticity at the origin for $\int (z)^{-2} \begin{cases} x^{6}+y^{2} & for \ z \neq 0 \\ 0 & for \ z = 0 \end{cases}$ (b) Find all values of z which satisfy (i) $e^{z} = 1+i$ (ii) sinz =2. [8+8]
- 3. (a) Show that $\int_{0}^{\pi} \frac{Cos2\theta}{1-2aCos\theta+a^2} = \frac{\pi a^2}{\sqrt{1-a^2}}$, (a² < 1) using residue theorem.

(b) Show by the method of contour integration that $\int_{0}^{\infty} \frac{Cosmx}{(a^{2}+x^{2})^{2}} dx = \frac{\pi}{4a^{3}}(1+ma)e^{-ma},$ (a > 0 , b > 0). [8+8]

- 4. (a) Expand as a Taylor series in f(z) = ^{2z³+1}/_{z²+1} about z=1.
 (b) Express f(z) = ^z/_{(z-1)(z-3)} in a series of positive and negative powers of (z-1). [8+8]
- 5. (a) Evaluate $\int_{C} \frac{\cos z \sin z}{(z + \pi/2)^3} dz$ with C = |z| = 2 using Cauchy's integral formula.

(b) Evaluate $\int_{1-i}^{2+i} (2x+1+iy)dz$ along (1-i) to (2+i) using Cauchy's integral formula. [8+8]

- 6. (a) Find the poles and residue at each pole of the function $\frac{2z+1}{(1-z^4)}$.
 - (b) Evaluate $\int_C \frac{\sin z}{z \cos z} dz$, where C is $|z| = \pi$, by residue theorem. [8+8]
- 7. (a) Prove that $\int x J_0^2 dx = \frac{1}{2} x^2 (J_0^2 + J_1^2) + C.$ (b) $P_n(x) = P'_{n+1} - 2x P'_n(x) + P'_{n-1}(x)$ [8+8]
- 8. (a) Find the bilinear transformation which maps the points z=1,-1,0 into the points 1,0,i.

R05

Set No. 3

(b) Show that the straight lines in the z-plane passing through the origin are mapped into straight lines in the w-plane under the transformation $w=z^2$. [8+8]