Code No: R05221901

 $\mathbf{R05}$

Set No. 2

II B.Tech II Semester Examinations, April/May 2012 COMPUTER ORGANISATION Common to Instrumentation And Control Engineering, Electronics And Computer Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1.	(a)	Why do we need subroutine register in a control unit? Explain.	
	(b)	Explain nanoinstructions and nanometry. Why do we need them?	[8+8]
2.	(a)	What is pipeline? Give the detailed picture of pipeline.	
	(b)	Explain pipeline for floating point addition and subtraction.	[8+8]
3.	Exp	lain the following:	
	(a)	Peripheral Component Interconnect Bus (PCI)	
	(b)	Universal Serial Bus (USB)	[8+8]
4.	Exp	ain the working of the following:	
	(a)	Page table	
	(b)	TLB	
	(c)	Memory Management Unit	[5+5+6]
5.	(a)	What are the different physical forms available to establish an inter-content of the summary of those.	onnection
	(b)	Explain time-shared common bus Organization.	
	(c)	Explain system bus structure for multiprocessors	[6+5+5]
6.	(a)	Explain Booth's algorithm with its theoretical basis.	
	(b)	Represent two n-bit unsigned numbers multiplications with a series multiplications.	of n/2-bit [8+8]
7.	(a)	Find out what are the actual values of the following IEEE 754 single number.	e precision
		i. Sign=0, exponent=all 1s and fraction field is not 0.	
		ii. Sign=0, exponent=all 0s and fraction field is 0.	
		iii. Sign=1, exponent=all 1s and fraction field is 0 .	
		iv. Sign=0, exponent=1000 0001, fraction=1100 0000 0000 0000 000	000 000
		[1	+1+1+3]
	(b)	Why is hus arbitration required Discuss about any two hus arbitrat	ion meth-

(b) Why is bus arbitration required. Discuss about any two bus arbitration methods. [10]

$\mathbf{R05}$

Code No: R05221901

Set No. 2

8. Explain about instruction, fetch, and decode cycles for a memory reference instruction. Draw a flow chart also to explain the same. Indicate clearly where and which processor registers comes into picture. Now let us assume while a instruction is in the middle of its decode cycle a interrupt is arrived. What is going to happen? Is the instruction completed or not. If we want to stop there itself and handle the interrupt what are the difficulties? [16]

Code No: R05221901

 $\mathbf{R05}$

Set No. 4

II B.Tech II Semester Examinations, April/May 2012 COMPUTER ORGANISATION Common to Instrumentation And Control Engineering, Electronics And Computer Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Why do we need subroutine register in a control unit? Explain.
 - (b) Explain nanoinstructions and nanometry. Why do we need them? [8+8]
- 2. (a) Find out what are the actual values of the following IEEE 754 single precision number.
 - i. Sign=0, exponent=all 1s and fraction field is not 0.
 - ii. Sign=0, exponent=all 0s and fraction field is 0.
 - iii. Sign=1, exponent=all 1s and fraction field is 0.
 - iv. Sign=0, exponent=1000 0001, fraction=1100 0000 0000 0000 0000 000

[1+1+1+3]

- (b) Why is bus arbitration required. Discuss about any two bus arbitration methods. [10]
- 3. (a) What is pipeline? Give the detailed picture of pipeline.
 - (b) Explain pipeline for floating point addition and subtraction. [8+8]
- 4. (a) Explain Booth's algorithm with its theoretical basis.
 - (b) Represent two n-bit unsigned numbers multiplications with a series of n/2-bit multiplications. [8+8]
- 5. (a) What are the different physical forms available to establish an inter-connection network? Give the summary of those.
 - (b) Explain time-shared common bus Organization.
 - (c) Explain system bus structure for multiprocessors [6+5+5]
- 6. Explain about instruction, fetch, and decode cycles for a memory reference instruction. Draw a flow chart also to explain the same. Indicate clearly where and which processor registers comes into picture. Now let us assume while a instruction is in the middle of its decode cycle a interrupt is arrived. What is going to happen? Is the instruction completed or not. If we want to stop there itself and handle the interrupt what are the difficulties? [16]
- 7. Explain the working of the following:
 - (a) Page table

Code No: R05221901

(b) TLB (c) Memory Management Unit [5+5+6] 8. Explain the following: (a) Peripheral Component Interconnect Bus (PCI) (b) Universal Serial Bus (USB) [8+8]

R05

Set No. 4

5

Code No: R05221901

II B.Tech II Semester Examinations, April/May 2012 COMPUTER ORGANISATION Common to Instrumentation And Control Engineering, Electronics And Computer Engineering

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

- ****
- 1. Explain the working of the following:
 - (a) Page table
 - (b) TLB
 - (c) Memory Management Unit
- 2. (a) What are the different physical forms available to establish an inter-connection network? Give the summary of those.
 - (b) Explain time-shared common bus Organization.
 - (c) Explain system bus structure for multiprocessors [6+5+5]
- 3. (a) Why do we need subroutine register in a control unit? Explain.
 - (b) Explain nanoinstructions and nanometry. Why do we need them? [8+8]
- 4. (a) Find out what are the actual values of the following IEEE 754 single precision number.
 - i. Sign=0, exponent=all 1s and fraction field is not 0.
 - ii. Sign=0, exponent=all 0s and fraction field is 0.
 - iii. Sign=1, exponent=all 1s and fraction field is 0.
 - iv. Sign=0, exponent=1000 0001, fraction=1100 0000 0000 0000 0000 000

[1+1+1+3]

- (b) Why is bus arbitration required. Discuss about any two bus arbitration methods. [10]
- 5. Explain the following:
 - (a) Peripheral Component Interconnect Bus (PCI)
 - (b) Universal Serial Bus (USB) [8+8]
- 6. (a) Explain Booth's algorithm with its theoretical basis.
 - (b) Represent two n-bit unsigned numbers multiplications with a series of n/2-bit multiplications. [8+8]

Set No. 1

Max Marks: 80

 $\mathbf{R05}$

[5+5+6]

$\mathbf{R05}$

Set No. 1

- 7. Explain about instruction, fetch, and decode cycles for a memory reference instruction. Draw a flow chart also to explain the same. Indicate clearly where and which processor registers comes into picture. Now let us assume while a instruction is in the middle of its decode cycle a interrupt is arrived. What is going to happen? Is the instruction completed or not. If we want to stop there itself and handle the interrupt what are the difficulties? [16]
- 8. (a) What is pipeline? Give the detailed picture of pipeline.

Code No: R05221901

(b) Explain pipeline for floating point addition and subtraction. [8+8]

2. Explain the working of the following: (a) Page table (b) TLB (c) Memory Management Unit [5+5+6]3. (a) What are the different physical forms available to establish an inter-connection network? Give the summary of those. (b) Explain time-shared common bus Organization. (c) Explain system bus structure for multiprocessors multiplications. (a) Why do we need subroutine register in a control unit? Explain. (b) Explain nanoinstructions and nanometry. Why do we need them? (b) Explain pipeline for floating point addition and subtraction. number. i. Sign=0, exponent=all 1s and fraction field is not 0. ii. Sign=0, exponent=all 0s and fraction field is 0. iii. Sign=1, exponent=all 1s and fraction field is 0.

- [6+5+5]
- 4. (a) Explain Booth's algorithm with its theoretical basis.

(a) Peripheral Component Interconnect Bus (PCI)

- (b) Represent two n-bit unsigned numbers multiplications with a series of n/2-bit [8+8]
- 5.
 - [8+8]
- 6. (a) What is pipeline? Give the detailed picture of pipeline.
 - [8+8]
- 7. (a) Find out what are the actual values of the following IEEE 754 single precision
 - iv. Sign=0, exponent=1000 0001, fraction=1100 0000 0000 0000 0000 000

[1+1+1+3]

- (b) Why is bus arbitration required. Discuss about any two bus arbitration methods. [10]
 - 7

II B.Tech II Semester Examinations, April/May 2012 COMPUTER ORGANISATION

 $\mathbf{R05}$

Common to Instrumentation And Control Engineering, Electronics And **Computer Engineering**

> Answer any FIVE Questions All Questions carry equal marks *****

Code No: R05221901

1. Explain the following:

(b) Universal Serial Bus (USB)

Time: 3 hours

Set No. 3

Max Marks: 80

[8+8]

$\mathbf{R05}$

Code No: R05221901

Set No. 3

8. Explain about instruction, fetch, and decode cycles for a memory reference instruction. Draw a flow chart also to explain the same. Indicate clearly where and which processor registers comes into picture. Now let us assume while a instruction is in the middle of its decode cycle a interrupt is arrived. What is going to happen? Is the instruction completed or not. If we want to stop there itself and handle the interrupt what are the difficulties? [16]