Code No: R09220306

R09

Set No. 2

[15]

II B.Tech II Semester Examinations, April/May 2012 NUMERICAL METHODS (Common to ME, MECT, MEP, MIE. MIM) ars Max Marks: 75

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Show that Newton-Raphson converges quadratically.
 - (b) Apply Newton Raphson method to find a fifth root of 3 correct up to three decimal places. [7+8]
- 2. Fit the following four points by the cubic spline:

х	x 1		3	4	
у	1	5	11	8	

under the conditions f''(1)=0=f''(4). Hence compute y(1.5) and y'(2.5). [15]

3. For the following data, fit the exponential curve of the form $y = ae^{bx}$ by the method of least squares.

X	0	1	2	3
у	1.05	2.10	3.85	8.30

4. Show that both the

(a) Jacobi method

(b) Gauss Seidel methods diverge for solving the system of equations

	2	3	1	x		-1	
	3	2	2	y	=	1	[15]
	1	2	2	z			
'	-		-				

- 5. (a) Given that $y' = 2x^2 + 2y$ with y(-0.6) = 0.1918, y(-0.4) = 0.414, y(-0.2) = 0.6655, y(0) = 1. Estimate y(0.2) using Adams-Bashforth method.
 - (b) Differentiate between Runge Kutta forth order method and Runge Kutta second order method. [8+7]
- 7. Write an explicit formula to solve numerically the heat equation (parabolic equation) $u_{xx} au_t = 0$ and explain method to solve the equation. [15]
- 8. Use Jocobi method for finding out the eigen values and the corresponding eigen vector for the matrix given below. $\begin{bmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ [15]

6.(a) The following data for the function $f(x) = x^4$ is given for the range of x value from 0.4 to 0.8.

Х	0.4	0.6	0.8	
f(x)	0.0256	0.1296	0.4096	

Then find f'(0:8) and f''(0:8) using quadratic interpolation. Compare the exact solution and obtain the bound on truncation errors.

(b) Derive the solution for integral equation based on Trapezoidal method. [8+7]

* * * * * * *

Code No: R09220306

R09

Set No. 4

II B.Tech II Semester Examinations, April/May 2012 NUMERICAL METHODS (Common to ME, MECT, MEP, MIE. MIM)

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks *****

2. Locate and correct the error in the following table of values.

1. Calculate the first and second order differences for $f(x) = ab^{cx}$

X	2.5	3.0	3.5	4.0	4.5	5	5.5
y	4.32	4.83	5.27	5.47	6.26	6.79	7.23

- 3. Derive the procedure for fitting a straight line by the method of least squares. [15]
- 4. (a) In any general second order partial differential equation with two independent variables, describe the condition for elliptic, parabolic and hyperbolic nature.
 - (b) State and explain Liebmann's iteration method for the solving the partial differential equations. [7+8]
- 5. Obtain a root for each of the following equation correct to three decimal places using the Bisection method. $f(x) = x^3 - x - 4 = 0$ [15]
- 6. (a) Give the equations for Runge Kutta method based on Taylor's series and solve the following differential equation $dy/dx = xy + y^3$ at y (0.1) and y(0.2) with the specified initial value of y(0) = 0.
 - (b) In solving dy/dx = f(x,y), $y(x_0) = y_0$, write down Taylor's series for $y(x_1)$. [8+7]
- 7. Solve the following system using
 - (a) Gauss Elimination method
 - (b) Gauss Jordan Method

10x + 2y + z = 92x + 20y - 2z = -44-2x + 3y + 10z = 22[15]

8. Determine a, b and c such that the formula $\int f(x) dx = h\{af(0) + bf(h/3) + c\}$ f(h) with the limits x = 0 to x = h is exact for polynomials of as high order as possible and determine the order of the truncation error. [15]

3

[15]

Max Marks: 75

Code No: R09220306

R09

Set No. 1

II B.Tech II Semester Examinations, April/May 2012 NUMERICAL METHODS

Time: 3 hours

(Common to ME, MECT, MEP, MIE. MIM)

Max Marks: 75

[15]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Using the Euler's method solve dy/dx = 1 + xy with y(0) = 2, calculate the values of y(0.1), y(0.2) and y(0.3) and compare the solution with the modified Euler's method. [15]
- 2. (a) What are the errors associated in the finite difference method? Explain them with the examples.
 - (b) Differentiate between initial value problem and boundary value problem for solving the ordinary differential equations. |7+8|
- 3. Given the table of values

0.11.011.0110				
х	150	152	154	156
$y - \sqrt{x}$	12.247	12.329	12.410	12.490

Evaluate $\sqrt{155}$ using Legrange's interpolation formula. $\left[15\right]$

- 4. (a) What is the convergence of Bisection method?
 - (b) Find a real root of $f(x) = x + \tan x 1 = 0$ in the interval (0, 0.5) by using Bisection method. [7+8]
- 5. Write down the implicit formula to solve one dimensional heat flow equation and suggest the suitable method to solve the equations. |15|
- 6. (a) For the given values of $u_0 = 4$; $u_1 = 14$; $u_2 = 51$ and du/dx = 2 at x = 0 and 65 at x = 2. Then calculate $\Delta^3 u_0$ and $\Delta^4 u_0$.
 - (b) The velocity v of a particle at distance s from a point on its path is given by the table below.

<u>a</u> , , , , ,				1 00				
V in m/s:	33	39	60	68	58	49	40	
s in meters :	0	10	20	30	40	50	60	

Calculate time taken to travel 60 m by using Simpson's $1/3^{rd}$ rule. [8+7]

7. Fit the curve of the form $y = ae^{bx}$ to the following data.

х	77	100	185	239	285
у	2.4	3.4	7.0	11.1	19.6

8. Given the A = I + L + U matrix where $A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$, L and U are strictly

lower and upper triangular matrices respectively, decide whether

(a) Jacobi

Code No: R09220306

R09

Set No. 1

(b) Gauss Seidel methods converge to the solution of Ax = b. [15]

6

Code No: R09220306

II B.Tech II Semester Examinations, April/May 2012 NUMERICAL METHODS

R09

(Common to ME, MECT, MEP, MIE. MIM)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Find a square root of 26 correct up to three decimal places by using Bisection method. [15]
- 2. Using Taylor's method solve dy/dx = 1 + xy with $y_0 = 2$, calculate
 - (a) y(0.1)
 - (b) y(0.2)
 - (c) y(0.3)

And also compare with the exact solution.

- 3. (a) Write the finite difference scheme of the differential equation y'' + y = 0.
 - (b) Give an example of a parabolic equation and explain the method to solve it for the specified boundary conditions. [7+8]
- 4. The velocity v of a particle at distance s from a point on its path is given by the table below.

S in meters							
V in m/s	46	57	63	66	62	58	37
T		. 11			1 00		1

Estimate the time table to travel 60 meters by using Simpson's $3/8^{th}$ rule. [15]

- 5. (a) Solve by finite difference method, the boundary value problem y''(x) y(x) = 2where y(0) = 0 and y(1) = 1, taking h = 1/4.
 - (b) Solve xy = y'' given y(0) = -1, y(1) = 2 by finite difference method with h = 0.5. [7+8]
- 6. Obtain an approximate linear least squares fit for the data given below

х	5	10	15	20	25				
у	15	19	23	26	30				
Estimate y corresponding to $x = 13$.									

7. (a) Find the condition number of the system $\begin{bmatrix}
2.1 & 1.8 \\
6.2 & 5.3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
2.1 \\
6.2
\end{bmatrix}$ State the condition of the system.

(b) Determine the Euclidean and maximum absolute row sum norms of the matrix $\begin{bmatrix} 1 & 7 & -4 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 7 & -4 \\ 4 & -4 & 9 \\ 12 & -1 & 3 \end{bmatrix}$$
 [7+8]

Max Marks: 75

[15]

[15]

R09

Set No. 3

Code No: R09220306

8.	Given	the	set	of	values	

х	10	15	20	25	30	35
у	19.97	21.57	22.47	23.52	24.65	25.89

Form the difference table and write down the values of $\Delta^2 y_{10}, \Delta y_{10}, \Delta^3 y_{10}, and, \Delta^5 y_{10}$. [15]
