Code	No	R09221	002
Couc	INU.	NU7221	002

B.Tech II Year - II Semester Examinations, April-May, 2012 STRUCTURED DIGITAL SYSTEM DESIGN (Common to ECC, EIE, ICE)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) Given the following Truth Table:

BIF	KZ	SIB
0	0	0
0	1	1
1	0	0
1	1	1

Interpret this table and write a logic statement using the words IF, AND, OR, ASSERTED and NOT-ASSERTED.

- b) Design an Excess-3 to Decimal code converter. [9+6]
- 2.a) Draw the schematic diagram of a tri-state buffer and explain its operation.
- b) Determine the maximum number of open collector outputs (TTL) that can be tied to a single bus wire which drives 10 other inputs (TTL). Find both n and the value of R_{pullup}
- c) With illustration, explain the propagation delay through an inverter. [5+5+5]
- 3.a) What is a sequential circuit? Distinguish it from combinational circuits.
 - b) Convert the RS Flip-Flop to i) D-Flip Flop ii) T Flip-Flop.
 - c) Compare Mealy and Moore Machines. [4+6+5]
- 4.a) Discuss the steps involved in the analysis of sequential circuits.
 - b) What is an equivalent state? How is it used in State reduction?
 - c) With a suitable example, explain the design of a next state decoder. [4+4+7]
- 5.a) Design a 3-bit modulo 6 unit distance counter with an Asynchronous Clear.
- b) Design a 3-bit universal shift register using JK flip flop to perform the following operations:i) No Changeii) Shift right operation

I) No Change	n) Shift right operation	
iii) Shift Left operation	iv) Parallel loading.	[7+8]

- 6.a) Explain the Multi –Input System Controller design phases.
- b) Illustrate the possible fault caused by an asynchronous input X changing just to the minimum set-up time limits of the D Flip-Flop. [7+8]
- 7.a) Draw the flow diagram for a prototype pop vending machine control system.
- b) What is Functional Partitioning? Explain. [8+7]
- 8.a) With block diagrams explain

 Direct addressed multiplexer configuration
 Indirect-Addressed multiplexer configuration.
- b) With schematic diagram, explain 82S100 FPLA architecture. [7+8]

Co	de No: R09221002		R09		SET-2
	B.Tech II Year	- II Semester 1 TURED DICIT	Examinatio) ons, April-May, 2 EM DESIGN	2012
Time:	3 hours	Common to E Answer any f Il questions ca	CC, EIE, I ïve questio rry equal n	CE) Nons narks	/ax. Marks: 75
1.a) b) c)	What are the advantag Convert the number (C i) Binary iv) Octal equivalents u Design a Carry Look-a	es of digital sys (.875) ₁₀ into its: ii) trina using the multip ahead adder and	stems? ry lication me l explain its	iii) quinary thod. s operation.	[4+4+7]
2.a) b) c)	Compare Open collect Explain the practical a Define i) Fan-in iii) Propagation Delay	for and Tristate spects of Wired ii) Fan- iv) Nois	output devi l Logic and out se Margin.	ces. Bus oriented stru	(4+5+6]
3.a) b) c)	Explain the need for se Design any two oscilla What is a race around	equential machinator circuits suit condition? How	ines. table for dig v is it avoid	gital system clock ed? Explain.	[4+6+5]
4.a) b)	The state equations an $J_A = (B'C+B'X)$ Output = ABCX (When With a suitable ex- minimization.	d output equati); $K_A=B$; $J_B=(A$ ere X is the extension explain cample, explain	on of a sequ AB'+B'C); ernal input). in the pa	tential circuit are: $K_B=B$; $J_C=A'C$; H Realize the circu artitioning proce	$X_{C} = (B+X'),$ uit. dure for state [7+8]
5.a) b)	Design a 3-bit modulo Design a 4-bit parallel	6 unit distance -in serial-out sh	counter wi ift register	th a Synchronous and explain its op	Clear. Deration. [8+7]
6.a) b) c)	Explain the steps invo Explain the first cut fle How to specify the sys	lved in the cont ow diagram for stem controller	roller desig a 2's comp states using	n phase. lement system. MDS diagram.	[5+5+5]
7.a) b) c)	Explain the process of Write a short note on I Explain the sequential i) Output holding regis ii) Asynchronous SET	synchronizing Hand Shake. machine with a ster and asynch /RESET registe	two system an ronous inpu er.	is. It holding register	[4+4+7]
8.a) b)	Discuss in detail about Design a four-bit BCE ROM.	t the application to Excess-3 co	n of MSI M ode convert	ultiplexers in Sys er and implement	tem controller. t it using a (4×4) [8+7]

COUE INO. R09221002	Code	No:	R09221	002
---------------------	------	-----	--------	-----

B.Tech II Year - II Semester Examinations, April-May, 2012 STRUCTURED DIGITAL SYSTEM DESIGN (Common to ECC, EIE, ICE)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

- 1.a) Define mnemonic and polarized mnemonic.
- b) Implement the following Boolean function using 8-to-1 multiplexer. $F(A,B,C,D) = \sum m(0,5,6,13,14)$
- c) Reduce the following Boolean expression using the theorems and identities $F = A B + C \overline{D} B + \overline{A} C \overline{D}$ [3+8+4]
- 2.a) Draw schematic diagram for tri-state buffer and explain the its operation.
- b) What are the practical aspects considered in designing the combinational circuits?
- c) Compare the open-collector and tri-state bus system. [6+3+6]
- 3.a) Draw a timing diagram and illustrate SETUP time and HOLDING time. Give a qualitative description of each and how these specifications relate the hardware of the Flip-Flop.
 - b) Using timing diagram, analyze the D-Latch Flip-flop. Include propagation Delay in your analysis. [7+8]
- 4.a) Using the state diagram make state assignment for the given state diagram as shown in Fig-1.
 - b) Derive the next state maps for the state assignment made from the above obtained state assignment. [8+7]

Fig-1

5.a) Design a twisted ring counter which will provide the following waveform shown in Fig-2. Make certain the counter is self-correcting.

Fig-2

b) Design an odd length (modulo 7) ring counter which is initialized or reset to state 7 (111). [8+7]

- 6.a) Explain the Multi –Input System Controller design phases.
- b) Illustrate the possible fault caused by an asynchronous input X changing just to the minimum set-up time limits of the D Flip-Flop. [7+8]
- 7. Design steps for the design of the controller and system for a high speed UART (Universal Asynchronous Receiver and Transmitter) able to send and receive serial data at a 1MHz rate. [15]
- 8. Implement the following controller using the indirect addressed multiplexer. The controller and system will add two four-bit unsigned numbers $(B_3B_2B_1B_0$ and $A_3A_2A_1A_0)$ which are stored in two separate four-bit PIPO's. [15]

B.Tech II Year - II Semester Examinations, April-May, 2012 STRUCTURED DIGITAL SYSTEM DESIGN (Common to ECC, EIE, ICE)

Time: 3 hours

Max. Marks: 75

[2+8+5]

Answer any five questions All questions carry equal marks

- 1.a) Define truth-table. What are the uses of truth tables?
- b) Implement the following Boolean function using one 74154 IC (4-to-16) decoder with low asserted outputs

 $F(A,B,C,D) = \sum m(1,4,6,8,11,13,14)$

c) Implement the following Boolean function with NOR gates $F = C + AB + AD(B + \overline{C})$

2.a) Implement F(L) and F(H) with an A-O-I device

0	1	1	1
U			

where F(L) and F(H) are the functions obtained from minterm and maxterm expressions of the above K-Map respectively.

- b) Define fan-out, fan-in, standard load and propagation delay. [8+7]
- 3.a) Define the following terms:
 i) Release time
 ii) Transition time
 iii) Setup time
 iv) Recovery time.
 - b) Using timing diagram, analyze the T Flip-flop. Include propagation delay in your analysis, illustrating the undesirable mode of operation (oscillation or hang) in it.

[8+7]

- Design a block diagram and a state diagram for a circuit which samples (with system CLK) an input line [x=1(L)]. This system is to give an indicator (SEQDET(H)) each time the three-bit sequence 110 is detected in a continuous data stream. [15]
- 5.a) Using universal shift register such as 74194 IC (four-bit multi-mode) design a self-correcting modulo ring counter.
 - b) A stepper motor drive circuit requires the following waveforms shown in Fig.1 (four signal lines) as inputs. Design a special sequence generator which will provide the necessary signals for this stepper motor drive. [7+8]

6. Design a square wave duty cycle discriminator system controlled by a system controller. This system is to measure the time difference between alternate low and high portions of a low frequency quasi square wave signal (0.1 to 100Hz).

[15]

- 7. Design a four-way traffic light controller, one that will handle traffic flow at high rates in any directions. Associate a left turn with all 4 directions as well as a pedestrian cross wall switch. [15]
- 8.a) Write short notes on Configurable memories.
- b) Implement the following expression with PLA $F = \overline{A} \overline{B} + B C + \overline{B} \overline{C}$

[7+8]
