RR

SET-1

B.Tech II Year - II Semester Examinations, April/May-2012 ELECTRICAL AND ELECTRONICS ENGINEERING (AERONAUTICAL ENGINEERING)

Time: 3 hours Max. Marks: 80

Answer any five questions All questions carry equal marks

- - -

- 1.a) Explain the principle of generation of sinusoidally alternating volatges.
 - b) Derive expression for power in three phase system.

[8+8]

- 2.a) Currents through three parallel connected impedances are $i_1(t) = 300 \, \text{Sin}(\omega t + 30^0), \ i_2(t) = 200 \, \text{Sin}(\omega t + 120^0) \ \text{and} \ i_3(t) = 175 \, \text{Cos}(\omega t + 45^0).$ Determine the total current. Also draw the phsor diagram.
 - b) What are the different types of generators? Explain indetail.

[8+8]

- 3.a) Derive expression for torque equation of D.C. Motor.
 - b) A 4 pole DC generator with a shunt field resistance of 100Ω and armature resistance of 1Ω has 378 wave connected conductors in its armature. The flux per pole is 0.02 Wb. If a load resistance of 10Ω is connected across the armature terminals and the generator is driven at 100 rpm, calculate the power absorbed by the load. [6+10]
- 4.a) Derive E.M.F. equation of single phase transformer.
 - b) Explain the principle of operation of three phase induction motor.

[8+8]

- 5.a) With the help of circuit diagram, explain the procedure of conducting open circuit test on single phase transformer.
 - b) Explain the procedure of determining voltage regulation of alternator. [8+8]
- A 200/440 V, 50 Hz, 1-phase transformer on test gave the following results:
 O.C. Test (L.V. Side): 20 V, 0.75 A, 80 W
 S.C. Test (H.V. Side): 20 V, 12 A, 100 W. Find voltage regulation and efficiency at 0.8 p.f. lagging and full load.
- 7.a) With the help of circuit diagram explain the procedure of obtaining V-I characteristics of P-N Junction diode.
 - b) With an example, explain intrinsic and extrinsic semiconductors. [8+8]
- 8. Write short notes on the following:
 - a) Zener diode
 - b) BJT
 - c) Applications of CRO.

[5+5+6]

RR

SET-2

B.Tech II Year - II Semester Examinations, April/May-2012 ELECTRICAL AND ELECTRONICS ENGINEERING (AERONAUTICAL ENGINEERING)

Time: 3 hours Max. Marks: 80

Answer any five questions All questions carry equal marks

- - -

- 1.a) Derive expression for torque equation of D.C. Motor.
 - b) A 4 pole DC generator with a shunt field resistance of 100Ω and armature resistance of 1Ω has 378 wave connected conductors in its armature. The flux per pole is 0.02 Wb. If a load resistance of 10Ω is connected across the armature terminals and the generator is driven at 100 rpm, calculate the power absorbed by the load.
- 2.a) Derive E.M.F. equation of single phase transformer.
 - b) Explain the principle of operation of three phase induction motor. [8+8]
- 3.a) With the help of circuit diagram, explain the procedure of conducting open circuit test on single phase transformer.
 - b) Explain the procedure of determining voltage regulation of alternator. [8+8]
- 4. A 200/440 V, 50 Hz, 1-phase transformer on test gave the following results:
 O.C. Test (L.V. Side): 20 V, 0.75 A, 80 W
 S.C. Test (H.V. Side): 20 V, 12 A, 100 W. Find voltage regulation and efficiency at 0.8 p.f. lagging and full load. [16]
- 5.a) With the help of circuit diagram explain the procedure of obtaining V-I characteristics of P-N Junction diode.
 - b) With an example, explain intrinsic and extrinsic semiconductors. [8+8]
- 6. Write short notes on the following:
 - a) Zener diode
 - b) BJT
 - c) Applications of CRO.

[5+5+6]

- 7.a) Explain the principle of generation of sinusoidally alternating volatges.
 - b) Derive expression for power in three phase system.

[8+8]

- 8.a) Currents through three parallel connected impedances are $i_1(t) = 300 \, \text{Sin}(\omega t + 30^0), \ i_2(t) = 200 \, \text{Sin}(\omega t + 120^0) \ \text{and} \ i_3(t) = 175 \, \text{Cos}(\omega t + 45^0).$ Determine the total current. Also draw the phsor diagram.
 - b) What are the different types of generators? Explain indetail. [8+8]

RR

SET-3

B.Tech II Year - II Semester Examinations, April/May-2012 ELECTRICAL AND ELECTRONICS ENGINEERING (AERONAUTICAL ENGINEERING)

Time: 3 hours Max. Marks: 80

Answer any five questions All questions carry equal marks

- - -

- 1.a) With the help of circuit diagram, explain the procedure of conducting open circuit test on single phase transformer.
 - b) Explain the procedure of determining voltage regulation of alternator. [8+8]
- A 200/440 V, 50 Hz, 1-phase transformer on test gave the following results:
 O.C. Test (L.V. Side): 20 V, 0.75 A, 80 W
 S.C. Test (H.V. Side): 20 V, 12 A, 100 W. Find voltage regulation and efficiency at 0.8 p.f. lagging and full load.
- 3.a) With the help of circuit diagram explain the procedure of obtaining V-I characteristics of P-N Junction diode.
 - b) With an example, explain intrinsic and extrinsic semiconductors. [8+8]
- 4. Write short notes on the following:
 - a) Zener diode
 - b) BJT
 - c) Applications of CRO.

[5+5+6]

- 5.a) Explain the principle of generation of sinusoidally alternating volatges.
 - b) Derive expression for power in three phase system.

[8+8]

- 6.a) Currents through three parallel connected impedances are $i_1(t) = 300 \, \text{Sin}(\omega t + 30^0), \ i_2(t) = 200 \, \text{Sin}(\omega t + 120^0) \ \text{and} \ i_3(t) = 175 \, \text{Cos}(\omega t + 45^0).$ Determine the total current. Also draw the phsor diagram.
 - b) What are the different types of generators? Explain indetail. [8+8]
- 7.a) Derive expression for torque equation of D.C. Motor.
 - b) A 4 pole DC generator with a shunt field resistance of $100~\Omega$ and armature resistance of $1~\Omega$ has 378 wave connected conductors in its armature. The flux per pole is 0.02 Wb. If a load resistance of $10~\Omega$ is connected across the armature terminals and the generator is driven at $100~\rm rpm$, calculate the power absorbed by the load.
- 8.a) Derive E.M.F. equation of single phase transformer.
 - b) Explain the principle of operation of three phase induction motor. [8+8]

RR

SET-4

B.Tech II Year - II Semester Examinations, April/May-2012 ELECTRICAL AND ELECTRONICS ENGINEERING (AERONAUTICAL ENGINEERING)

Time: 3 hours Max. Marks: 80

Answer any five questions All questions carry equal marks

- - -

- 1.a) With the help of circuit diagram explain the procedure of obtaining V-I characteristics of P-N Junction diode.
- b) With an example, explain intrinsic and extrinsic semiconductors. [8+8]
- 2. Write short notes on the following:
 - a) Zener diode
 - b) BJT
 - c) Applications of CRO.

[5+5+6]

- 3.a) Explain the principle of generation of sinusoidally alternating volatges.
 - b) Derive expression for power in three phase system.

[8+8]

- 4.a) Currents through three parallel connected impedances are $i_1(t) = 300 \text{ Sin}(\omega t + 30^0)$, $i_2(t) = 200 \text{ Sin}(\omega t + 120^0)$ and $i_3(t) = 175 \text{ Cos}(\omega t + 45^0)$. Determine the total current. Also draw the phsor diagram.
 - b) What are the different types of generators? Explain indetail.

[8+8]

- 5.a) Derive expression for torque equation of D.C. Motor.
 - b) A 4 pole DC generator with a shunt field resistance of $100~\Omega$ and armature resistance of $1~\Omega$ has 378 wave connected conductors in its armature. The flux per pole is 0.02 Wb. If a load resistance of $10~\Omega$ is connected across the armature terminals and the generator is driven at $100~\mathrm{rpm}$, calculate the power absorbed by the load. [6+10]
- 6.a) Derive E.M.F. equation of single phase transformer.
 - b) Explain the principle of operation of three phase induction motor. [8+8]
- 7.a) With the help of circuit diagram, explain the procedure of conducting open circuit test on single phase transformer.
 - b) Explain the procedure of determining voltage regulation of alternator. [8+8]
- 8. A 200/440 V, 50 Hz, 1-phase transformer on test gave the following results: O.C. Test (L.V. Side): 20 V, 0.75 A, 80 W S.C. Test (H.V. Side): 20 V, 12 A, 100 W. Find voltage regulation and efficiency at 0.8 p.f. lagging and full load. [16]
