Code No: 09A1BS04

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech I Year Examinations, November/December - 2013 **MATHEMATICAL METHODS**

(Common to EEE, ECE, CSE, EIE, BME, IT, ETM, ICE)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

Find the values of λ for which the equations

$$(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0$$

$$(\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0$$

$$2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0$$

are consistent and find the ratio of x : y : z when λ has the smallest of these values. When happens when λ has the greater of these values. [15]

- Show that the two matrices A, C⁻¹AC have the same latent roots. [15] 2.a)
 - For a matrix $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$ find the Eigen values of $3A^3 + 5A^2 6A + 2I$. b)
- Reduce the following quadratic form to canonical form and find its rank and 3. signature $x^2+4y^2+9z^2+t^2-12yz+6zx-4xy-2xt-6zt$. [15]
- By using method false position, find the root of the equation $\cos x xe^x = 0$. 4.a)
 - Fit the cubic spline for the data (0, 1), (1, 2), (2, 9) and (3, 28). b)
- Fit a straight line to the following data giving weights to x as 1, 1, 2, 1, 1 by the 5.a) method of least square:

 $x \mid 0 \mid$ y | 1 | 1.8 | 3.3 | 4.5 | 6.5

From the following table, find the value of x for which y is maximum and find b) [15] this value of y.

x	1.2	1.3	1.4	1.5	1.6
y	0.9320	0.9636	0.9855	0.9975	0.9996

- Solve the initial value problem $\frac{dy}{dx} = x y^2$, y(0) = 1 to find y(0.2) by Adam's 6.a)method.
 - Find the successive approximate solution of the differential equation y' = y, b) [15] v(0) = 1 by Picard's method and compare it with exact solution.
- Find the Fourier series for $f(x) = \cos \alpha x$ in the range $(-\pi, \pi)$, where α is not an 7. [15] integer.
- Solve $p\cos(x+y) + q\sin(x+y) = z$. 8.a)
 - Solve $p\sqrt{x} + q\sqrt{y} = z$. b)

[15]