Code No: 09A30401

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year I Semester Examinations, November/December-2013 Probability Theory and Stochastic Processes (Common to ECE, ETM)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) State and prove the theorem of total probability.

- b) Two boxes B1 and B2 contain 100 and 200 light bulbs respectively. B1 and B2 have 15 and 5 defective bulbs respectively.
 - i) Suppose a box is selected at random and one bulb is picked out. What is the probability that it is defective?
 - ii) Suppose we test the bulb and it is found to be defective. What is the probability, that it came from B1?
- 2.a) Check whether the following function is a valid distribution function $G_X(x) = 3[u(x-a) u(x-3a)]$. Mention the properties used for justification.
 - b) Given k is a constant and X is a random variable with

$$f_X(x) = \begin{cases} kx & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Determine the value of k and also find $P(1/4 < x \le 1/2)$.

- c) Represent the expression and sketch of pdf of Gaussian random variable. Also explain the significance of Gaussian random variable. [15]
- 3.a) Find the mean of Poisson random variable.
 - b) If X and Y are random variables related by the transformation $Y = A \tan X$, where A is a positive constant, where X is uniformly distributed in the interval $(-\pi/2, \pi/2)$. Express $f_Y(y)$ in terms of $f_X(x)$.
- 4.a) If X and Y are independent random variables and W = X+Y, obtain the probability density function of W interms of pdf of X and pdf of Y.
 - b) Write all the properties of joint density function and obtain marginal densities of $f_{XY}(x, y) = u(x)u(y)x e^{-(y+1)}$. [15]
- 5.a) For the transformations $Y_1 = aX_1 + bX_2$, $Y_2 = cX_1 + dX_2$ where a, b, c, d are real constants and X_1 , X_2 , Y_1 , Y_2 are random variables. Derive the expression for joint density of Y_1 , Y_2 in terms of joint density of X_1 , X_2 .
 - b) Two random variables X and Y have the joint characteristic function $\Phi_{XY}(\omega_1, \omega_2) = \exp(-2\omega_1^2 8\omega_2^2)$ find E[X], E[Y] and R_{XY}. [15]
- 6.a) Check whether the random process $X(t) = A \cos(\omega_0 t + \Theta)$ is WSS process or not, for 'A' and ω_0 being constant and Θ uniformly distributed between $(0, 2\pi)$.
- b) Write the properties of autocorrelation function of a random process and prove any two of them. [15]

7.a) State and prove Wiener – Khintchine relations.

Find the power density spectrum of a random process whose autocorrelation function is $R_{XX}(\tau) = A \cos(\omega_0 \tau)$. [15]

8.a) Derive the expression for overall noise figure of a cascaded two port network.

b) Write notes on white noise.

c) Explain the concept of effective input noise temperature.

[15]

---00000---

