Code No: 126EE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, October/November - 2016

FINITE ELEMENT METHODS (Common to ME, AE, MSNT)

Max. Marks: 75 Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

(25 Marks) Differentiate finite element method and finite difference method. [2] 1.a) b) Bring out the difference between plane stress and plane strain problems. [3] What are the consistent nodal force vector for uniform load and varying load? [2] c) What are the various functions considered under classical beam theory? [3]d) [2] How triangular elements are isoparametrically represented. e): How axisymmetric element can be equalized to the CST element. [3] f) [2] Write the governing equation for the torsional analysis of non circular shafts. g) Formulate the equation of one dimensional criteria of composite wall. [3] h) i) Distinguish between consistent and lumped mass matrix. [2] What is characteristic polynomial technique?

PART - B

(50 Marks)

- [10] 2. Using polynomial function, derive the shape function of a bar element. OR Formulate the stress strain relations for 2D and 3D elastic problems. 3.a) b) Assemble the global stiffness matrix and load vector for a bar element. [5+5]
- 4. Determine the stresses and reaction for the following truss element. Given E=200GPa and $A = 2000 \text{ mm}^2$. (Figure 1) [10]

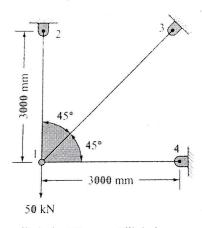


Figure 1

Derive Hermite Shape function for the beam element.

[10]

6. For the axisymmetric element shown in Figure 2, determine the element stiffness matrix. Take E=200 GPa, and v=0.3. [10]

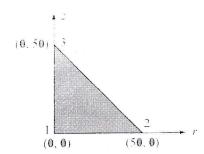


Figure 2 OR

7. Derive the jacobian matrix of a hexahedral element.

[10]

8. Evaluate the nodal values of a shaft of 10 mm square. Given $G = 8 \times 10^6$ N/cm² and ϕ =0.01 degree/cm. Use only one eighth of the cross section. (figure 3) [10]

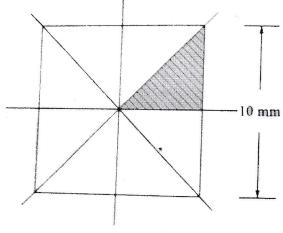


Figure 3 OR

9. For the two dimensional body as shown figure 4, determine the temperature distribution. The left and right ends have constant temperatures of 200°C and 100°C respectively. Take k=5 W/cm°C. The body is insulated along the top and bottom. [10]

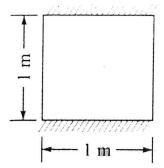
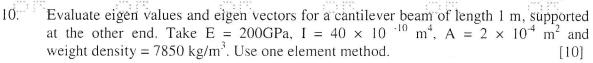
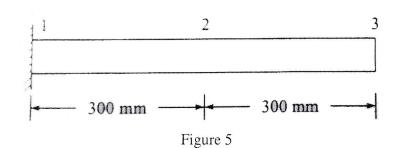




Figure 4

OR

Evaluate nodal frequency of the beam shown in Figure 5. Use two element model and take E=210 GPa, weight density 7800 kg/m³, A=400 mm², and I = 5000 mm⁴. [10]

---00O00---