K()	RO RO RO RO RO	
Ro	Code No: 133AJ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2017 DIGITAL LOGIC DESIGN (Common to) CSE, IT) Max. Marks: 75	
Ro	Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question earries 10 marks and may have a, b, c as sub questions. PART- A (25 Marks)	
Ro	1.a) Subtract the following using 1's and 2's complement $(101)_2 - (10110)_2$. [2] b) Distinguish between canonical and standard forms by giving an example. [3] c) Derive the sum of minterms for the function $f(a,b,c)=a'b+b'c'$ [2] d) Implement the following function using only NAND Gates $F=a.(b'+c')+(b.c)$. e) Differentiate multiplexer and de-multiplexer. [3] f) Draw the diagram of 4-Bit Parallel adder cum parallel subtractor. [3] g) Show the excitation table and truth table of JK flip flop. [2] h) Differentiate critical and non-critical race. [3] i) Define Register Transfer Language. [2]	
Ro	$\mathbb{R} \cap \mathbb{R} \cap \mathbb{R} \cap \mathbb{R} $	F
Ro	 2.a) What are the various logic gates, give the representation along with the truth table. b) What is the use of complements? Perform subtraction using 7's complement for the given Base-7 numbers (565)-(666). OR 3.a) Convert the following to the corresponding bases i) (9BCD)₁₆ = ()₈ ii) (323)₄ = ()₅ b) Given the 8 bit data word 11011011, generate the 12 bit composite word for the Hamming code that corrects and detects single errors. [5+5] 	
Ro	4.a) Derive the product of maxterms for f(a,b,c,d)=a.b.c+b'.d+c.d'. b) Derive and Implement Exclusive OR function involving three variables using only NAND function. OR 5.a) Obtain the simplified expression in SOP form of	
	F(a,b,c,d,e)= $\sum (1,2,4,7,12,14,15,24,27,29,30,31)$ using K-maps. Implement the function $f(a,b,c)=\pi(0,1,3,4)$ using NAND-NAND two level gate structure. [5+5]	
KU.	KU KU KU KU KU KO	T

