Code No: 133AN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2018

ELECTRICAL TECHNOLOGY

	Time:	3 Hours ELECTRICAL TECHNOLOGY (Common to ECE, ETM) May	x. Marks: 75	***
	Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part Part B consists of 5 Units. Answer any one full question from each question carries 10 marks and may have a, b, c as sub questions.	A. unit. Each	
		SP SP PARTA SP S	(25 Marks)	****
	1.a) b) c) d)	What is the function of brushes in a d.c generator? Define speed regulation of d.c. motor. What are the various losses present in a transformer? Draw equivalent circuit of a short circuit test.	[2] [3] [2] [3]	
	e) f) g) h)	Define efficiency of IM. Give the application of 3-\phi I.M. What is synchronous reactance? What is distribution factor?	[2] [3] [2] [3]	
	i) j)	Define Deflecting torque. Why PMMC not measure AC quantity. PART-B	[2] [3]	
	2.a)	Explain how will you classify DC generators in detail and also explain the generators. A 6-pole wave connected DC generator having 60 slots on its armature wit per slot, runs at 750 rpm and generates an open circuit voltage of 230 V. Fig.	th 6 conductors ind the useful	
		flux per pole.	[5+5]	o.
journe Zamele Samele	3.a) b)	Explain the losses that occur in a DC machine. A 4-pole DC shunt generator with lap connected armature supplies a location 200 V. The armature resistance 0.1 ohms and the shunt field resistance in the Total armature current.	ad of 100 A at s 80 ohms find [5+5]	DOM:
	4.a) b)	Derive from the fundamentals, the E.M.F equation of a single phase transf Draw a no load phasor diagram and explain it.	[3+3]	
	5.	A 15kVA, 1-phase, 50Hz, 500/250V transformer gave following test resul OC test (LV) side: 250V, 3.0A, 200W SC test (HV) side: 25V, 20A, 300W		
		Calculate efficiency and regulation at full-load, 0.8 p.f lagging.	[10]	

	6.a) b)	Explain constructor Three phase indusupply. Calculate	ction motor is w	g principle of 3-p yound for 4 – pole	hase Squirrel cages and is supplied	ge motor. I from a 230V,	50 Hz
	annia S	i) The synchronoii) The speed of tiii) The rotor free	us speed he motor when t	the slip is 2%	and the second		[5+5]
3	7.a) b)	Explain different The frequency of is 1.5Hz. Calcula	femf in the state	le of 3-Ø Induction	uction motor is a	0Hz, and that o	of rotor [5+5]
James Comments of the Comments	8.a) b)	Explain constructions Howe.m.f is in	ctional features of duced in an 3-ph	of alternator. nase alternator? D OR	erive the express	sion for e.m.f?	[5+5]
	9.a) b)	A COTT - 14 mot	on has a flux of (synchronous gen 0.1 Wb/pole, sinu e turn of the wind	soidally distribu	ted. Calculate to s 3/4 of a pole	he rms pitch. [5+5]
gandy gandy anger	-10.a) b)	Derive the torque Discuss the class	e equation of M sification of elec	oving iron instru ctrical instrument OR	ments. s.	, and	[5+5]
	11.a) b)	Explain the con Explain the con	struction and op- struction and op	eration of stepper	motor. e 1-phase induct	ion motor.	[5+5]
2	normal,		9 0	00000			January Samuel
8		8 R					Jane Janes
		76					
2		87	3Ę				
		5=					