R16

Code No: 132AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech I Year II Semester Examinations, August - 2018

MATHEMATICS - II

(Common to EEE, ECE, CSE, EIE, IT, ETM)

Max. Marks: 75

Time: 3 hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

- Find the Laplace transform of the function $f(t) = t^2$. [2] 1.a)
 - [3] Find Laplace transform of $4 \sin(t - 3)$. b) [2]
 - Show that $\Gamma(n) = 2 \int_0^\infty e^{-x^2} x^{2n-1} dx$. c)
- Show that $\beta(p,q) = \ddot{\beta}(p+1,q) + \beta(p,q+1)$. d) Find the area bounded by the curves y = x, $y = x^2$. e)
- [3] Evaluate $\iint_{\Omega} x^2 y^2 dx dy$ f)
- [2] If $\phi = x^2 y^2 z^2$ then find Grad ϕ . g)
- Find a unit normal vector to the surface $x^2 + y^2 + 2z^2 = 26$ at the point (2,2,3). [3] h) [2]
- Find curl \overline{F} when $\overline{F} = 3x^2i + (2xz y)j + zk$. Is the work done by a force in moving a particle from one point to another point in an i)
 - irrotational field is independent of the path of integration? Justify the answer.

PART-B

(50 Marks)

- Use Laplace transforms, solve y''(t) + 5y'(t) + 6y(t) = t, y(0) = 1, y'(0) = 1. [10]
 - Solve by using Laplace transforms $y'' + 4y' + 3y = e^{-t}$ with y(0) = y'(0) = 1. [10] 3.
 - Prove that $\int_0^1 \frac{x^2 dx}{\sqrt{1-x^4}} \times \int_0^1 \frac{dx}{\sqrt{1+x^4}} = \frac{\pi}{4\sqrt{2}}$ using $\beta \Gamma$ functions. [10] 4.
- Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ 5.a)
 - [5+5]

88	8R 8R 8R 8R	8F?
6.	The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes in A, B and C. Find the volume of the te OABC.	trahedron [10]
\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x^{2}yz dz dy dx.$	[10]
8.	Prove that if \vec{r} is the position vector of any point in space then $r^n \vec{r}$ is irrotation solenodial if $n = -3$.	onal and is [10]
9.a) b)	Evaluate $\nabla \cdot \left(r \nabla \left(\frac{1}{r^3} \right) \right)$ where $r = \sqrt{x^2 + y^2 + z^2}$. If $R = xi + yj + zk$, then find $\nabla \cdot \overline{R}$ and $\nabla \times \overline{R}$.	[5+5]
10.	Verify Stoke's theorem for the vector field $\vec{F} = (x^2 - y^2)i + 2xyj$ integrated rectangle in the plane $z = 0$ and bounded by the lines $x = 0$, $y = 0$, $x = a$, $y = OR$	
\bigcirc \bigcirc 11.	Verify divergence theorem for $2x^2yi - y^2j + 4xz^2k$ taken over the region of	first octant [10]

of the cylinder $y^2 + z^2 = 9$ and x = 2.

--ooOoo--