Unit –I

Introduction:- What is an algorithm, Algorithm Specification, Performance Analysis, Randomized Algorithms

Elementary Data Structures: - Stacks and Queues, Trees, Dictionaries, Priority Queues, Sets and Disjoint Set Union, Graphs.
Introduction

Q) Define an Algorithm. What are the properties of algorithms?
Ans
 Algorithm :(Defn.):-

An algorithm is a finite set of instructions which when followed accomplishes a particular task.

Characteristics of an algorithm(properties):-

· Input:- Zero or more quantities are to be applied as inputs. An algorithm has zero or more input quantities that are given to it initially before the algorithm begins or dynamically as the algorithm runs. These inputs are taken from specified set of objects. These inputs can also be applied externally to the algorithm.

· Output:- At least one quantity must be produced as output. An algorithm has one or more output quantities that have a specified relation with the inputs.
· Definiteness:- Each instruction must be clear and there is no ambiguity. Each operation specified must have a definite meaning that it must be perfectly clear. Each step of an algorithm precisely defined. The actions to be carried out must be rigorously and unambiguously specified for each case. Ex:- “compute 10/0” and “add 2 or 6 to a” are not definite.
· Finiteness:- An algorithm must always terminate after a finite no. of steps.If we trace and the instructions of the algorithm then for all cases of inputs the algorithm must terminate after a finite no. of steps.
· Effectiveness:- Each operation should be effective. i.e., the operation must be able to carry out in a finite amount of time. An algorithm is generally expected to be effective in the sense that its operations must all be sufficiently basic, that they can in principle be done exactly and in a finite length of time by someone using pencil and paper.
Q) What do you mean by algorithm analysis?

Q) Write about debugging and profiling?

Ans:-

Study of Algorithms:-

In the study of algorithms there are four distinct areas –
· How to design algorithms?

· How to validate algorithms?

· How to analyze algorithms?

· How to test the programs?

Designing Algorithms:-

Creating an algorithm is an art which may never be fully automated. There are different types of designing techniques depending upon the task to be performed. The various designing techniques available are
1. Greedy Method:- It is useful to solve problems with ‘n’ inputs.

2. Divide & Conquer:- Use full to solve problems with independent sub problems.

3. Dynamic Programming:- Use full to solve problems with dependent sub problems.

4. Back Tracking: - It is used to obtain the solution by imposing implicit & explicit constraints on the entire solution set.

5. Branch & Bound: - The back tracking algorithm is effective for decision Problems but it is not designed for optimization Problems. This drawback is rectified in branch and bound technique.

Validation of algorithms:-

· Verification means are we doing the process right

· Validation means are we doing the right process.

Once an algorithm is designed it is necessary to show that it computes correct answers for all possible legal inputs. This process is known as validation of algorithms. At this stage there is no need to express the algorithm as a program. Purpose of validations is to ensure that the algorithm will work correctly independent of Programming Languages.
Analyzing Algorithms:-

As an Algorithm is executed it uses resources like processor and memory. Analysis of algorithms is used for the performance evaluation of algorithms. i.e., the time and space complexities must be determined.

· Time complexity refers to the amount of processor time required to execute a program.

· Space complexity refers to the amount of memory occupied by the program.

Testing Programs:-

Testing of Programs consist of two Phases-

1. Debugging

2. Profiling

Debugging is a process of executing a program on sample data to determine whether faulty results will occur and if at all any errors occur how to correct them. Debugging is concerned with conducting tests to uncover errors and ensure that the defined input will produce the actual results that agree with the desired results. Debugging can only point to presence of errors, but not to their absence. Debugging is not testing but always occurs as a consequence of testing. Debugging begins with the execution of a test case. The debugging process attempts to match symptom with cause, thereby leading to error correction. Debugging has two outcomes- Either the error is detected and corrected or the error is not found.
Profiling is the process of executing a correct program on data sets with real time data and measuring the time and space complexities. This is also called as performance profile. These timing figures are useful as they may confirm and point out logical places to perform useful optimization. Profiling is done on programs that are devised, coded, proved correct and debugged on a computer.
Q) Define Pseudo Program. Give the general procedure for writing a pseudocode.

Ans:-
Computational Procedures/Pseudo Programs:-

Algorithms which are finite and effective are also called as Computational procedures and are also treated as Pseudo Programs.

Algorithm Specification:-

PseudoCode Conventions:-

The manner in which we describe an algorithm is specified as ‘Algorithm Specification’. Algorithms are generally specified in a natural language such as English called as Pseudo code. Given below are some of the conventions to be followed while writing a Pseudo code Program.
1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces {and}. In general statement blocks and body of procedures are enclosed within braces.

3. Statements are delimited by semicolon (;).

4. An identifier begins with a letter. The data types of variables are not explicitly declared. The types will be clear from the context of usage.

5. Simple data types such as integer, float, char, Boolean can be used. In order to form a compound data type records are used. Records are written as given below:
Node=record
 {

 Datatype-1 data1;

Data type –n datan;

Node *link;

 }

The individual data elements are accessed using ->
6. Assignment of values to variables is done using the assignment statement (variable):=(Expression);

7. There are two Boolean values true and false. Logical operators supported are ‘AND’, ‘OR’, ‘NOT’. Relational Operators Provided are (, ≤, (, ≥, (, ≠ .

8. Array indices start at Zero. The elements of multidimensional arrays are accessed using square braces i.e.,[and]. If A is a two dimensional array then the (i, j)th element is denoted as A[i, j].

9. There are 3 looping constructs available.

a. While loop:-

While (condition) do

 {

 <statement 1> ……

<statement n>

 }

b. For Loop:-

 For variable:=value1 to value2 step step do

 {

 <statement 1> ……

 <statement n>

 }

c. Repeat until

repeat

 <statement 1> ……

 <statement n>

 until(condition)

10. There are 3 conditional checking Statements.

a. If(condition) then (statement)

b. If(condition) then (statement 1) else (statement 2)

c. Case

{

 :(condition 1): (statement 1) …..

 :(condition n): (statement n)

 :else : (statement n+1)

}
11. Read is used as input statement and Write as Output statement.

12. An Algorithm is the only available procedure that consists of Heading and Body.

13. A Heading is of the form

a. Algorithm name(<Parameter List>)

14. The body may consist of one or more statements enclosed within braces.

Q) What are priori and posterior analysis of algorithms? Explain.

Q) Distinguish between a priori analysis and a posteriori testing.

Ans:-

Performance Evaluation:-

The basic criterion on which an algorithm can be evaluated is
1. Does it do what we want it to do?

2. Does it work correctly according to the original specifications of the task?

3. Is there documentation that describes how to use it and how it works?

4. Are procedures created in such a way that they perform logical sub functions?

5. Is the code readable?
Performance evaluation is generally classified into two major phases –
1. Performance analysis(Priori estimates) and

2. Performance measurement(Posteriori testing)

Priori analysis is basically machine and programming language independent. In this analysis we basically determine the order of magnitude/ frequency count of the steps/ statements. This can be determined directly from the algorithm, independent of the machine on which it is executed and the programming language in which it is written.
Example:

A: For i:=1 to n step 1 do

X := n+y;

B: for i:=1 to n do

For j:=1 to n do

X := x+y;

In program segment ‘A’ the step count is one and the frequency count is ‘n’. similarly for program segment ‘B’ step count is one and frequency count is (n*n)=n2.

Posteriori testing is concerned with collecting the actual statistics about the algorithm’s consumption of time and space while it is executing. Therefore, it is machine dependent and programming language dependent.

Q) What is the time complexity of an algorithm? Explain with an example.

Q) Differentiate between space complexity and time complexity?
Performance Analysis:-

During the performance analysis the following concepts will be considered.

1. Memory and time requirements of a problem.

2. Asymptotic Notations (O, (,(,(, ().
3. Measuring the actual runtime of a problem by using the clocking functions.
 The space complexity of the program is the amount of free memory the program needs to run to completion. The space complexity of a program can be used to make decisions about memory such as whether sufficient memory is available to run the program or not. If the system is a multiprocessing system then the space complexity becomes an important aspect.
 The time complexity of the program is the amount of time needed by the program to run to completion. The time complexity of the program is calculated for the following reasons.
1. Some computers require users to provide an upper limit on the amount of processing time.

2. To select an alternative solution to the same problem.

3. The program we are developing might need to provide a satisfactory real time response.

Space Complexity:-

 The memory requirements for most of the programs will be as follows –

· Instruction Memory/Space

· Data Memory/Space

· Environmental Stack
Instruction Memory:- It is the space needed to store the compiled version of the program instruction. This depends on factors such as compilers, computer options etc. Nature of this space is static.

Data Memory:- It is the memory needed to store all the constants and variable values. It also includes the memory allocated for dynamic memory allocation process. The amount of space required for a structure variable can be obtained by adding the space requirements of all its components.

Ex:- struct stack

{

int a[20];

int top;

}; struct stack s;

Memory occupied by s would be 20*2+2 =42 bytes.

Data space can be organized as either static or dynamic.
Environmental Stack:- It is used to save the information needed to resume the execution of partially completed functions. It completely stores and deals with functions and temporary results. Each time a function is invoked, the following data is stored in the environment stack.
1. Return address of next instruction.

2. Values of local variables and formal parameters.

3. While dealing with recursive functions entire middle products (temporary results) are stored in the environmental stack.

· Based on the above facts we can conclude that the space requirement is the sum of the following components – A fixed part and a variable part.

· The space requirement S(P) of any algorithm P is represented as

 S (P) = c + Sp

Where c is a constant and Sp is the variable part.
Time Complexity:-

 The time complexity of a program mainly depends upon speed of the system and the number of instructions present in the program. It also depends on the length of each program instruction.
 Let T(P) be the time taken for program ‘P’. It will be both compilation time and runtime. But the compilation of a program is needed only at the beginning of the program. Once the program is compiled there is no need to recompile the program unless any changes are made to the program. So, after the first time generally, the program is executed without compilation. Hence for the first time

T (P) = c(P) + r(P)
From 2nd time onwards T (P) = r(P)
 r(P) is the runtime for the program.
 It depends upon no. of factors and all of those are to be considered before calculating the runtime. For this purpose two techniques are adopted.
 A Program step is defined as a syntactically or semantically meaningful segment of a program that has an execution time independent of the instance characteristics.
1. Operation counts

2. Step counts

Operation Counts:-

 The time complexity of a program can be calculated by using counts for the same type of operations like no. of additions, subtractions, multiplications etc.,

Step Counts:-

 The drawback in operation counts method is that the time complexity of only the selected operations is considered and the time spent on other instructions and operations is omitted. In step count method we can calculate the time spent on all parts of the program. The step count is the function of instance characteristics (variables). So during this process we have to calculate counts per variable. After relevant instance characteristics have been selected we can define a step. A Step is any computation unit that is independent of the characteristics. When analyzing a recursive program step counts are calculated using recursive formulas.
 When the chosen parameters are not sufficient to determine the step counts then we make use of three kinds of step counts.

1. The best case step count is the minimum no. of steps that can be executed for the given parameters.

2. The worst case step count is the maximum no. of steps that can be executed for the given parameters.

3. The average step count is the average no. of steps executed on instances with the given parameters.

Q) What is a priori analysis? Explain asymptotic notations used for determining the timing complexities of the algorithm.

Q) Explain the mathematical notation and definitions used for analyzing algorithms.

Q) Explain the asymptotic notation used to analyze the algorithms.

Q) What is asymptotic notation? Briefly explain how timing complexity of an algorithm is derived at using priori analysis.
Q) Define the following asymptotic notations. {i} Big ‘oh’ {ii} Omega {iii} Theta

Q) Define the Big –O notation used for expressing the complexity of an algorithm and briefly explain its properties.

Asymptotic Notations:-
 Important reasons for determining the operation and step counts are

1. To compare the time complexities.

2. To predict the growth in runtime by changing inputs.

 Neither of these counts yield to an accurate measure of time complexity because when we use operation counts, we focus only on certain key operations and ignore all of the other operations. Similarly while using step counts we only consider certain variables and ignore other aspects of the program.

 There is a notation that will enable us to make meaningful statements about time and space complexities. These notations are called as Asymptotic Notations. These notations are used to describe the behavior of the time and space complexities.

 The most commonly used notations are O(Big “oh”), o(Small ”oh”),(,((Omega), ((Theta).

O(Big “oh”):- This notation provides an upper bound for the functions. It can be defined as

 The function f(n)=O(g(n)) (read as “f of n is big oh of g of n”) if there exist positive constants c and n0 such that f(n)≤c*g(n) for all n, n≥ n0.

f(n) is the function of time and space complexities and g(n) is the function of step counts or operation counts. Some of the most commonly used notations are –
· O(1) – When the computing time is a constant.

· O(n) – When the no. of comparisons increases linearly with the no. of inputs.

· O (n2) – Quadratic

· O (n3) - Cubic

· O (2n) – Exponential

· O (log n) – Logarithmic

· O (n!) – Factorial

((Omega):- This notation is used to provide lower bound for the functions. It can be defined as –

 The function f(n)= ((g(n)) (read as “f of n is omega of g of n”) if there exists a positive constant c and n0 such that f(n)≥c*g(n) for all n, n≥ n0.

((Theta):-
 This notation is used when the function ‘f’ is bounded by upper and lower limits. The function is defined as –

 The function f(n)= ((g(n)) (read as “f of n is theta of g of n”) if there exist positive constants c1,c2, and n0 such that c1g(n) ≤ f(n)≤ c2 g(n) for all n, n≥ n0.

O(small oh):-

((Little omega):- Left for the purpose of student’s study.
Q) What is a randomized algorithm? Classify the randomized algorithms.
Randomized Algorithms:-

 An algorithm that uses a randomizer (like a random number generator) is called a randomized algorithm. The output of a randomizer is used in making decisions in the algorithm. For the same input, the output of a randomizer and the execution time of the randomized algorithm differ from run to run.
 Randomized algorithms can be classified in to two categories:

1. Las vegas algorithms

2. Monte carlo algorithms

 Las vegas algorithms:- These algorithms always produce the same (correct) output for the same input. The execution time of these algorithms depends upon the randomizer output and is characterized as a random variable.
Monte Carlo Algorithms:- These algorithms produce different outputs for the same input. In this type of algorithms there are more chances of getting incorrect answers which are not desirable. However for the fixed input there are less variations in the execution time when compared to Las vegas algorithms.
Q) What are the advantages and disadvantages of randomized algorithms?
Advantages:-
· Simple and efficient to use.

· Yields better complexity bounds.

Dis Advantages:-

· Probable to fail.
· Does not give good performance due to the use of randomizer in an algorithm.
Elementary Data Structures:-

Q) What is a stack?

Stack:-
 Stacks are used to implement LIFO mechanisms. Insertions and deletions can be done only from one end called the top. To implement a stack we need an array and a variable top.

	

	

	[image: image14.png]

4

	3

	2

	1

	0

[image: image15.png]V4

vi

[image: image16.png]

· When the stack is empty top will be < 0.

· When the stack is full top will be ≥ size-1.

· The two operations that can be performed on stack are push and pop.

Q) Write an algorithm for inserting and deleting elements into a stack.
Push Operation:

 Push operation is performed by performing the following steps.

1. Check for stack overflow.

2. Increment top

3. Insert the item.
Design:-

Algorithm Push(Item)

//Push is used to insert an element into stack.

//n is the size of stack and item is the element to be inserted into stack.

//algorithm returns true if successful, else returns false.

{

if (top ≥ n-1) then

 {

 write (“ stack is full”);

 return false;

 }

 else

 {

 top:=top+1;

 stack[top]:=item;

 return true;

 }

}

Analysis:-

The time taken for inserting an element into the stack will be constant because the same set of instructions (top=top+1 and stack [top] =item) are executed every time we insert an element. Also the memory requirement for each and every element would be the same. Therefore the complexity of push operation can be given as O(1).

(calculation of space complexity given for students as a workout)

Pop Operation:-

 Pop operation is performed by performing the following steps.

1. Check for stack underflow.

2. Delete the topmost element by copying it into item.

3. Decrement top.
Design:-

Algorithm Pop(Item)

//Pop is used to delete an element from stack.

//n is the size of stack

//item is used as output to hold the element deleted from stack.

//algorithm returns true if successful, else returns false.

{

if (top < 0) then

 {

 write (“ stack is Empty”);

 return false;

 }

 else

 {

 item:=stack[top];

 top:=top-1;

 return true;

 }

}

Analysis:-

The time taken for deleting an element from the stack will be constant because the same set of instructions is executed every time we delete an element. Also the memory requirement for each and every element would be the same. Therefore the complexity of pop operation can be given as O(1).

(Calculation of space complexity pending)

Q) What is a Queue?

Queues:-

Queue is a FIFO structure in which insertions are done from one end (Rear) and deletions from the other end (Front). An array is taken to implement a Queue and two integers to represent Front and rear.

· When the queue is empty, F<0 and R<0.

· When the Queue is full, R ≥ size-1.

· Both insertion and deletion can be done on Queues.

Q) Write algorithms for inserting and deleting elements into Queue.

Insert Operation:-

 Insert operation is performed by performing the following steps.

1. Check for Queue overflow.

2. Increment Rear.

3. insert item into queue at rear.

Design:-

Algorithm QInsert (Q, Front, Rear, n, Item)

//Insert is used to insert an element into Queue.

//n is the size of Queue

//item is used as input to hold the element to be inserted into queue.
//Front and Rear have been set to -1 prior to the first invocation.
//algorithm returns true if successful, else returns false.

{

if ((Rear < 0)AND(Front=Rear)) then

 {

 write (“ Queue is Full”);

 return false;

 }

 {

 }

}

Analysis:-

 (calculation of space complexity)

Q) Write an algorithm to insert an element into a circular queue.

Circular Queue: - The drawback in linear queue is even though there are empty locations at the front end, when r=size -1 insertion into the queue is not possible. This drawback can be overcome by using circular. Queue in which the last and first positions are assumed to be adjacent to each other.

	
	
	30
	40
	50
	60

 0 1 2 3 4 5

[image: image17.png]

Queue

[image: image18.png]

[image: image1]
If we want to insert an element now we have to reinitialize r=o and insert the element at Q(r), we insert 60, 70 linearly it looks like.

	60
	70
	30
	40
	50
	60

 0 1 2 3 4 5

 r f

(-1+1) % size

0 % size

0 % 6

0 = f
(r+1)% size =f

 (r+1)% size =f will be equal to f in two cases

(i) When circular queue is full

(ii) When circular queue is empty
* If (((r+1) % size ==f) && (r!=-1)) then circular queue is full.

If (((r+1)% size ==f) && (r=-1)) Circular queue is empty

Circular queue also follows FIFO and we need an array and two variables. The operations which can be performed on circular queue are insertions and deletions.

Insertion: - If (r+1)%size == f and r(-1 queue is full and insertion is not possible else if r==size-1 reinitialize r=0 and insert the element at Q (r) else increment ‘r’ by 1 and insert the element at Q (r).

Deletion: - If (r+1)% size ==f and r==-1 or f==0 and r==1 then queue is empty, deletion not possible.

Else if, f==size-1 reinitialize f=0 to delete the last element. Else if f==r queue contains only one element reinitialize f==0 & r==-1 to delete that element else, increment ‘f’ by 1.
Design:-

Algorithm insert (item)

//insert an item into queue

//return five if successful, else return false

//item is used as input

{ if (((r+1) mod SIZE) ==f and (r1=-10 then

{ write (“circular queue is full”)

return false;

}

else

if (r==size-1)

{r: = 0;

 Queue [r] = item;

 return true;

}

else

{r:=r+1

 queue [r] = item;

 return true;

}

}
Analysis:- Since the time and memory requirement for true insertion of an element in to queue is constant. The time and space complexities for the insert algorithm will be O(1).
Design:-

Algorithm Delete (item)

//delete an element from Queue

//return true if successful, else return false

//item is used as output

{ if((r+1)mod size)==f and (r==1) then

{ write (“circular queue is empty”)

return false;

 }

 else

 if (f==r) then

 { item = queue(f);

f=0;

r=1;

return true;

 }

 else

 if (f==size-1) then

 { item = queue(f);

f=0;

return true;

 }

 else

 { item = queue(f);

f:=f+1;

return true;

 }

}

Analysis:- Since the time requirements for the deletion of an element is constant. The time complexity for the delete algorithm will be 0(1)
Q) Show how to represent a Dequeue in a one dimensional array and write algorithms which insert and delete at either end.

Ans:- Left for student exercise.
Trees and their terminology:-
1. Tree:- A tree is defined as a nonlinear container that models in a hierarchical relationship in which all but one element has a unique predecessor(parent) but may have many successors(children). The unique parentless element is called the “root” of the tree. (or) A tree ‘T’ is a finite nonempty set of elements. One of these elements is called the “root”, and the remaining elements (if any) are partitioned into trees which are called the sub trees of ‘T’.
2. Node:- The elements of a tree are called nodes. Every node has a unique path connecting it to the root of the tree.
3. Path:- Path is a sequence of adjacent elements.
4. Length of a path:- The length of a path is the number of its adjacent connections, which is one less than the number of nodes that it connects. In the tree shown below, the path(M,H,C,A) connecting node M to root node A has length 3.

[image: image2]
5. Depth of a node:- The depth of a node is the length of its path up to the root. In the tree shown above, node E has depth 2 and node M has depth 3. The root itself has depth 0.
6. Level of a tree:- The level of a tree means all the nodes at a given depth. In the tree with root A shown above, level 2 consists of the set of node {E, F, G, H}.
7. Height of a tree:- The height of a tree is the greatest depth among all its nodes. The tree shown above has height 3.
8. Singleton Tree:- The tree whose root is its only node is called a singleton tree. The height of a singleton tree is Zero.
9. Empty tree:- The tree with zero nodes is called the empty tree. The height of an empty tree is defined to be -1.
10. Degree of a node:- The degree of a node is the number of its children. In the above example, B has degree 1, D has degree 0, and H has degree 5.
11. Degree of a tree:- The degree of a tree is the maximum of its element degree.
12. Ancestor:- For each node x, let P(x) denote the path from x to the root of the tree. For example in the tree shown here, P(M)=(M,H,C,A). Except for x itself, the nodes in P(x) are called the ancestors of x. For example, H, C, and A are the ancestors of M. The root of a tree is the ancestor of all other nodes, and it is the only node that has no ancestors.
13. Descendant:- We say that x is a descendant of y if y is an ancestor of x. In this example, M is a descendant of C, so are F, G, H, K, L, N, O and P. All nodes except the root itself are descendants of the root node.
Q) Briefly explain about Binary Trees.

Q) What is a Binary Tree?
Binary Tree:-

A binary tree T is defined as a finite set of elements, called nodes such that

· T is empty(called the null tree or empty tree) or
· T contains a distinguished node R, called the root of T, and the remaining nodes of T form an ordered pair of disjoint binary trees T1 and T2.

(or)

A Binary tree is a finite (possibly empty) collection of elements. When the binary tree is not empty, it has a root element and the remaining element(if any) are partitioned into two binary trees, which are called the left and right sub trees of T.

Q) Distinguish between Binary tree and Tree?

Difference between a Binary tree and a Tree:-

	Binary Tree
	Tree

	A Binary Tree can be Empty.
	A Tree cannot be empty

	Each element in a binary tree has exactly Two sub trees
	Each element in a tree can have any number of sub trees.

	The sub trees of each element in a binary tree are ordered as left and right sub trees.
	The sub trees in a tree are not ordered.

Q) Define full binary tree and complete binary tree?
Full Binary Tree:-

A binary tree of height ‘h’ that contains exactly 2h-1 elements is called a full binary tree. i.e., A binary tree is called a full binary tree if there are maximum no. of nodes in the last level also.

Complete Binary Tree:-

A binary tree T is called complete if each node of T can have at the most two children. A binary tree T at level L can have at the most 2L nodes.

Q) Discuss about formula based (array) representation of binary trees. Discuss where this representation is useful and where it is convenient?

Q) Explain about linked representation of a binary tree?
Ans:- Notes given in class.
Q) Define Binary Search Tree? Explain the procedure for constructing a binary search Tree?

Ans:-
Binary Search Tree: -

A binary search tree is a binary tree it may be empty. If it is not empty it satisfies the following properties.

(1) Every element has a key and no two elements have the same key

(2) The keys in the left sub-tree are smaller than the key in the root

(3) The keys in the right sub-tree are larger than the key in the root

(4) The left and right sub-trees are also binary search trees

CONSTRUCT A BINARY SEARCH TREE FOR THE FOLLOWING KEYS: -

3, 7, 11, 1, 25, 15, 27, 35, 20, 43

LEFT SIZE OF A NODE: -

In a binary search tree it is defined as the height of the left sub-tree of the node + 1

Ex: -

Q) Give the algorithm for binary search and determine its time complexity by the step count method.

Ans:-
SEARCHING OF A BINARY SEARCH TREE: -

Recursive search of abinary search tree

Algorithm search (t,x)

// t is the root

// n is element to be searched

{ if (t=0) return 0;

 else if (x=t→ data) then return

 else if (x < t → data) then

 return search (t→l child, x);

 else return search (t→r child, x);

}

Ex: -

	
	
	
	
	
	
	t
	
	
	
	
	
	

	
	
	
	
	
	
	20
	
	
	
	
	
	

	
	
	
	
	
	
	1000
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	15
	
	
	
	
	
	25
	
	
	

	
	
	
	2000
	
	
	
	
	
	5000
	
	
	

	2
	10
	N
	
	11
	18
	N
	
	
	
	N
	30
	N

Search (1000, 5)

Search (2000, 5)

Search (3000, 5)

Search (n,5)

 3000 4000 6000
Iterative Algorithm

Algorithm Search (x)

{ found: = false;

 t : = tree;

 while (t (0) and not found) do

 { if (x= t → data)} then found:= true;

 else if (n<(t → data)} from t:= t → l child;

 else t:= (t→r child)

 }

 if (not found) then return 0;

 else return t;

}

Searching According to Rank: -

Algorithm search (k)

{

found:= false, t:= stree;

while (l(0) and not found) do

{

 if (k=(t→left size)) then found:= true;

 else if (k<(t→left size)) then t:= (t→l child);

 else

 { k:= k-(f→left size);

 t:= (t→r child);

 }

}

if (not found) return 0;

else

return t

}

· Left size indicator a value which is equal to height of left sub-tree +1

· The argument ‘k’ is the kth smallest element which is to be determined.

Ex: -

	
	
	
	
	
	
	t
	
	
	
	
	
	

	
	
	
	
	
	
	20
	
	
	
	
	
	

	
	
	
	
	
	
	1000
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	1
	
	

	
	
	
	15
	
	
	
	
	 N
	25
	
	
	

	1
	
	
	2000
	
	
	
	
	
	5000
	
	
	1

	0
	10
	N
	
	N
	18
	N
	
	
	
	N
	30
	N

 3000 4000 6000

k = 5

Initial t = 1000

While (t=1000 & true) – true

Else

K: = 5-3= 2

T: = 5000

While (t = 5000 & true) – true

Else

K: = 2-1 -= 1

T: = 6000

While (t=6000 & true) – true

5= 5 – found true

Out of while

Return 6000;

Determine the frequency counts for all the statements in the following two algorithm segments: -

(1) for I = 1 to n do

for j = 1 to n do

for k: = 1 to n do

n: = n+1

The outer for loop execute n+1 times for the value of i=1 to n and for the value of each ‘I’ the inner for loop will be executed n+1 times. Similarly for each value of j the inner most for loop will be executed n+1 times (The no. of step counts for loop is (n+1) (n+1) (n+1) =)n+1)3

For i= 1 to n the for loop will be true ‘n’ times and becomes false the (n+1)th time (the statement will execute n x n x n times when t he for loops are true.

(The tot al no. of steps counts will be (n+1)3 + n3

Q) Write an algorithm to insert an element into a binary search tree?

Ans:-
INSERTION IN TO A BINARY SEARCH TREE: -

To insert a new element we must first search the tree whether an element is existing with the key which is to be inserted. If search is so successful then the key is already present and insertion is not possible otherwise. The new key can be inserted at the point where the search terminates.

Consider a binary search tree with the following keys.

Suppose if we want to insert an element ‘80’ search is carried out for the element and the search terminates unsuccessfully at the node ‘40’. As ‘80’ is greater than ‘40’ it is inserted as right child to ‘40’.

Algorithm insert (n)

// insert x into binary search tree

{

found: = false;

p: = tree;

//search for x. Q is parent of p

While [(p(0) and not found) do

{ q: = p; // save p

 if [n: = (p→data)] then found: = true;

else if (n<(p→data)] then p:= (p→l child):

else p: = (p→r child);

}

// perform insertion

 if (not found) then

{ p: = new tree node;

 (p→l child): = 0; (p→r child): = 0

(p→data): = x;

if (true (0) then

{if (x<(q→l child): = p;

else

(q→r child): = p;

}

}

else

tree: = p;

}

Q)Write the algorithm for deletion into a binary search tree with an example.

Ans:-
DELETION FOROM A BINARY SEARCH TREE: -

When deleting a node from a binary search tree 3 cases arise.

CASE-1: - If the node to be deleted is a leaf node then it can be very easily deleted by making the link field to the child null in the parent node.

If we want to delete 35

[image: image3]

CASE- 2: - Deleting a node which has only one child. This is also quiet straight forward the node can be deleted by cosigning the address of only child of the node is to be deleted to the parent of the node which is to be deleted.

If we want to delete the node 5 then cosign the address of only child of 5 i.e. 3000 to the parent of 5 i.e. 1000.

[image: image4]
CASE -3: - When the node to be deleted contains 2 children.

Step (i): - Copy the value of largest child in the left sub-tree or smallest child in t he right sub-tree in to the node which is to be deleted.

STEP (ii): - Copy the address of child of the child (i.e. largest in left sub tree or smallest in right sub-tree) in to the node which is to be deleted and then delete the child.

Suppose if we want to delete 30 in figure 1 then

 Step – (i) Step – (ii)

[image: image5]

Analysis: - It the height of binary search tree is ‘n’ the search by key, search by rank, insertion and deletion all take 0 (n) times.

Q) What is a graph? Explain various concepts related to graph?

Ans:-
GRAPHS:

A graph is a collection of vertical and edges where the no. of vertical is non-empty.

V(G) = { V1,V2,V3,V4} → Vertex Set.

E (G) = {C1,C2,C3,C4,C5,C6} → Coyle set

│V(G) │ = 4 → Order of graph

│E(G) │ = 6 → size of graph

V(G) = {V1,V2,V3,V4}, c(g)

│v(g) │ = 4, │e(g) │ = 0

Directed Graph: - A graph in which there is a specific direction for each edge is known as directed graph.
Self Loop: - An edge connecting to it self is known as Self Loop

Parallel Edges: - Between any 2 pair of verticals it ---- is more than one edge then such edges are called as parallel edges.

∑ deg V(G) = 4+3+5+2 = 14

 = 2 x 7

 = 2 x │E(G) │

deg (V1) = 4 deg (V4) = 2

deg (V2) = 3

deg (V3) = 5

Simple Graph: - A graph in which there are no self loops or parallel edger is called as a simple graph.

Multi Graph: - A graph which contains either self loop or parallel edger or both is called as a Multi Graph.

Degree of a Vertex (non directed Graph): - The no/: of edges incident on a vertex is called as the degree of the Vertex

Note: - (1) The degree of Self Loop is counted as 2

 (2) The sum of the degrees of all the verticals in a graph will be equal to 2
 times the no/: of edges.

Degree of vertex (Directed Graph): - The no/: of edger incident to a particular vertex is called as its in degree. It is denoted by deg + G(V)

The no/: of edges incident from a particular vertex is called as out degree of the vertex. It is denoted by deg G(V).

Ex: -

deg + G(V)
deg – G(V)

 deg + (V1) = 2
 deg - (V1) = 2

 deg + (V2) = 2
 deg - (V2) = 1

 deg + (V3) = 2
 deg - (V3) = 3

 deg + (V4) = 1
 deg - (V1) = 1

 ______________ _______________

 7 =│E│ 7 = │e│

In a directed graph sum of the in degrees of all the vertices will be equal t o sum of the out degrees of all the vertices and that will be equal to the no/: of edges.

Path: - A sequence of edger is known a path.

Simple Path: - A path which does not contain the repeation of either edger or vertices except for the end paths and the length of the path must be atleast one.

Closed Path: - A path in which initial and final vertices are same is called as a closed path.

Cycle: - A closed path in which there is no repetition of either vertices or edges is called a cycle.

Circuit: - A closed path in which there is no repetition of edges is called as a circuit.

 D J • I

 C E F G H

 A • • • •
 B
Path Simple Path
 Closed Path
 Circuit
 Cycle
a-d-c-e-f-j-d-a
No

Yes

No

No

b-c-e-f-g-j-f-b
No

Yes

Yes

No

a-b-a
No

Yes

No

No

a-d-c-b-a
Yes

Yes

Yes

Yes

i-i
Yes

Yes

No

No

e-f-g-j-f-b
No

No

No

No

CONNECTED: - Two vertices are said to be connected if there is a path between the two vertices.

Ex: -

V1 is connected to V2

V1 is connected to V3

V1 is connected to V6

V3 is connected to V7 and so on

V3 not connected to V8

V4 not connected to V8 and so on

CONNECTED GRAPH: - A graph in which every vertex is connected to every other vertex then it is called as a connected graph.

Ex: -

ADJACENCY: - Two vertices are said to be adjacent to each other if there is a edge between them.

V1 is adjacent to V4, V2

V1 is not adjacent to V2, V3, V5, V6, V7 and so on

Note: - If two vertices are adjacent then they will be connected the converse need not be true.

SUB GRAPH: - A graph is called as a sub graph of another graph G if V (H) ≤ V (G)

 E (H) ≤ E (G)

Ex: -

• • • •

 • • •
 ‘G’ H1
Not a Sub Graph: -

TREE: - a simple graph without any cycle is called as a tree

 (Or)

A graph in which there is unique path between any pais of vertices is called as a tree.

SPANNING TREE: -

A subgraph ‘H’ of a graph G is called as a spanning tree if (i) H includes all the vertices of G(ii) H is CL Tree.

Ex: -

 G
Q) Define graph. Explain the representation mechanisms of a graph?
Ans:-

REPRESENTATION OF GRAPH: -

(1) Adjacency Matrix

(2) Adjacency Lists

(3) Sequential (or) Array representation

(4) Adjacency multi Lists

Directed Graph

 G1 G2 G3

(1) Adjacency Matrix

1
2
3
4

1
2
3
4
5
6 7

 1
0
1
1
1
 1
0
1
1
0
0
0 0

 2
1
0
1
1
 2
1
0
0
1
1
0 0

 3
1
1
0
1
 3
1
0
0
0
0
1 1

 4
1
1
1
0
 4
0
1
0
0
0
0 0

 5
0
1
0
0
0
0 0

G1

 6
0
0
1
0
0
0 0

 7
0
0
1
0
0
0 0

 G2

1
2
3

 1
0
1
0

 2
1
0
1

 3
0
0
0

 G3
(2) Adjacency Lists: -

Adjacency lists are representing using nodes which are of type data and link they also have head nodes it contains only the link nodes and no/: of head nodes will be equal to the no/: of vertices
	1
	
	2
	3
	
	3
	4
	
	4
	Null
	
	1
	
	2
	Null
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2
	
	1
	3
	
	3
	4
	
	4
	Null
	
	2
	
	1
	3
	
	3
	Null

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3
	
	1
	2
	
	2
	4
	
	4
	Null
	
	3
	
	Null
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	4
	
	1
	2
	
	2
	3
	
	3
	Null
	
	
	
	
	
	
	
	

 G1 G3
	1
	
	2
	3
	
	3
	Null
	
	
	
	
	4
	
	1
	Null

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2
	
	1
	4
	
	4
	5
	
	5
	Null
	
	5
	
	2
	Null

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3
	
	1
	6
	
	6
	7
	
	7
	Null
	
	6
	
	3
	Null

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	7
	
	3
	Null

 G2
(3) Sequential (Or) Array representation: - (Only for non directed) To represent graphs using arrays we need to consider an array of size n+2e+1 where n= no/: of vertices

 e = no/: of edges

G1: - 4+2(6)+1 = 17

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	6
	9
	12
	15
	18
	2
	3
	4
	1
	3
	4
	1
	2
	4
	1
	2
	3

 Out of band adj. of 1 adj. of 2 adj. of 3 adj. of 4

G2: - &+2(6)+1 = 20

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20

	9
	11
	14
	17
	18
	19
	20
	21
	2
	3
	1
	4
	5
	1
	6
	7
	2
	2
	3
	3

 Adj. of 1 adj. of 2 adj. of 3

 Out of band adj. adj. adj. adj.

 of 4 of 5 of 6 of 7

ADJACENCY MULTI LISTS: -

G1

	N1
	1
	2
	N2
	N1

	
	
	
	
	

	N2
	1
	3
	N3
	N4

	
	
	
	
	

	N3
	1
	4
	0
	N5

	
	
	
	
	

	N4
	2
	3
	N5
	N6

	
	
	
	
	

	N5
	2
	4
	0
	N6

	
	
	
	
	

	N6
	3
	4
	0
	0

 1

No/: of head nodes = no/: of vertices

 2

No/: of lists = No/: of Edges

 3
The Lists are: -
1. N1 → N2 → N3

2. N1 → N4 → N5

3. N2 → N4 → N6

4. N3 → N5 → N6
G2

	1
	
	
	N1
	1
	2
	N2
	N3

	
	
	
	
	
	
	
	

	2
	
	
	N2
	1
	3
	0
	N5

	
	
	
	
	
	
	
	

	3
	
	
	N3
	2
	4
	N4
	0

	
	
	
	
	
	
	
	

	4
	
	
	N4
	2
	5
	0
	0

	
	
	
	
	
	
	
	

	5
	
	
	N5
	3
	6
	N6
	0

	
	
	
	
	
	
	
	

	6
	
	
	N6
	3
	7
	0
	0

	
	
	
	
	
	
	
	

	7
	
	
	
	
	
	
	

Vertex Lists:

1. N1
→ N2

2. N1
→ N3 → N4

3. N2
→ N5 → N6

4. N3

5. N4

6. N5

7. N6

G3.

Q) Define Priority queue and give an example?

Ans:-
PRIORITY QUEUE: -

A data structure that supports the operations of search minimum (maximum), insert and delete is called as a priority queue. Ex: - Suppose we have a machine whose services are to be sold and the same amount is charged from each user irrespective of the time of usage. Then we can maintain a priority i.e. the user’s with minimum time will be given more priority.

Contrarily suppose we have a machine which provides a constant service time for each user where as every user is willing to pay different amounts then t he queue of users is maintained according to maximum amount as priority.

Q) What is a heap? What are its applications?

Q) Define the data structure ‘Heap’?

Heaps: - A heap is a complete binary tree with the property that the value at each node is as large as or as small as its children.

If the parent is (to its children then it is called as a max heap.

Max. heap

If the parelel is ≤ its children at each node then it is called as a min heap.

Q) Write an algorithm for insertion of an element into a heap.
Q) Describe the procedure to insert an element into a heap and explain with an example.

Q) Describe the procedure to insert an element into a heap with the help of algorithm.

Ans:-
Construction of Heaps: -

Heaps can be constructed in 2 ways

(1) Incremental Process

(2) Adjusting the complete binary tree

In the incremental process a complete binary tree satisfying the properties of heap is constructed element by element i.e. an element is always inserted at the end of the array which already consists of a heap i.e. a nth element is inserted into array consisting of (n-1) elements representing a heap. And then the entire array readjusted to represent a heap with (n-0) elements.

Ex: - {40,80,35,90,45,50,70}

(i) (ii) Adjust (iii) (iv)

 Adjusted

(v) (vi) (vii)
 Adjusted

 Adjusted

(viii)
Algorithm insert (a,n)

{//insert a(n) into heap when is sorted in a ()

i:=n; item: = a(n);

while [(i>1) and [a(i/2) < item)] do

{a[i]: = a[(i/2)];

i:= [i/2];

}

a[i]: = item;

return ftrye’

}

	1
	2
	3
	4
	5
	6
	7

	80
	45
	70
	40
	35
	50
	90

Observation a →
i=7 item = 90

i>1 & a[‘3] < 90 < → True

	1
	2
	3
	4
	5
	6
	7

	80
	45
	70
	40
	35
	50
	70

 a →

 i = 3

 i>1 and a[1] < 90 → True

	1
	2
	3
	4
	5
	6
	7

	80
	45
	80
	40
	35
	50
	70

 a →

i = 1

 I > 1 – false

	1
	2
	3
	4
	5
	6
	7

	80
	45
	80
	40
	35
	50
	70

 a →
Analysis: -
The best case occurs when a new role to be inserted is less than its parents. Then the No/: of comparisons would be only one.

Sample: - Insert 60 in to a

	1
	2
	3
	4
	5
	6

	80
	45
	70
	40
	35
	50

 a →
	1
	2
	3
	4
	5
	6
	7

	80
	45
	80
	40
	35
	50
	60

 a →
The worst case the no/: of comparisons will be proportional to the height of the tree i.e. the insertion of a new element takes 0 (log 2) comparisons in the worst case. Insert 100 in to a where a is
	1
	2
	3
	4
	5
	6
	7

	80
	45
	70
	40
	35
	50
	60

 No/: of comparisons = 3
 3
 Log 8/2 = log2 2 = 3 log 22 = 3x1 = 3
→ Adjusting the complete binary tree: -

In the second process of constructing a heap we first construct a complete binary tree with the given data and then we convert it in to heap using the following algorithms.

Algorithm Heapify (a,n)

// Readjust the elements in a [1:n] to form a heap

{

for i:= [n/2] to 1 step -1

I = 3 do adjust (a,i,n);

}

Algorithm Adjust (a,i,n)

// the complete binary tree with root 2i and 2i+1

// are combined with node I to form a heap

// rooted at I no. node has an address greater

// than n or less than 1.

{

j = 2i; item:= a[i];

While (j≤n] do

}

if [(jan/and (a[j] < a[j+1])] from j:= j+1;

// compare left and right child

// and let j be the larger child

if (item (a[j] then break;

// if A position for item is found

a [(j/2)]: = a [j]; j= 2j;

a [(j/2)]: = item;

}

	1
	2
	3
	4
	5
	6
	7

	100
	119
	118
	171
	112
	151
	132

Ex: - a →

 _ heapify (a, 7)

i = 3

Adjust (a,3,7)

J = 6 item = 118

(6<4) and (a(6)<a(7)) false

a[3] = a[6]

j=12

12 ≤ 7 = false out of while

a[6] = item

_ heapify will be dec i by 1

adjust (a,2,7

 2nd pass: - i = 2 j = 2(i)

j = 4
j= (2)

item = 119

(4<7) and (a[4] < a/5) – false

119 (171 – false

a(2) = a(4), j = 8

8 ≤ 7 – false out of loop

a [4] = item

- heapify will decrement I by 1

i = 1, j = 2, item = 100

(1<7) and (a[2] < a[3]) – false

item (a[2] – false

a[1] = a[2], j = 4

(4≤ 8) true

 4<7 = true (once again)

100 (119 – false

a(2) = a (4)

j = 8 – out of loop

a(4) = item

Analysis for adjust: -

The adjust algorithm three inputs the array ‘a’ position of the parent node ‘I’ and size of the array ‘n’.

The adjust algorithm converts the complete binary trees with roots 2i and 2i+1 in to a heap rooted at ‘I’ by combining node with ‘I’. The algorithm points to the left child of the node. Which is to be adjusted i.e. j=2i and compares it to the right child and finally ‘j’ points to the maximum and count both the Childs and is compared with the parent and if the parent is to be less they are swap (logically). This process is continued united the entire sub tree is converted to a heap.

The worst case time for the heapify algorithm is O(n). The heapify algorithm is more efficient to construct a heap as compared to the insert house to inset an element insert takes log comparison in the worst case and to insert all the in elements it takes O (nlogn) comparisons. The heapify requires at the most ‘n’ element comparisons. The worst case time for adjust is also proportional to the huge of the tree i.e. in worst case adjust takes O(logn2) element comparisons.

Q) Describe the procedure to delete an element from a heap and explain with an example.

Q) What is a heap? Explain how to delete an element from the heap.

Ans:- Notes given in class.
Q) Write and explain the algorithm for creation of heap and fins its time complexity in the worst case.

Q) Write and explain the algorithm for heap sort.

Q) Write an algorithm for heap sort.

Q) Describe about heapsort algorithm.

Q) Give the heap sort algorithm and trace it for an example sorting of ten items. Q) Given ‘n’ elements stored in an array, it is required to sort them in non-decreasing order. Write heapsort algorithm and illustrate with the data {20,30,5,10,25,40,8}.

Q) Develop an algorithm for creating heap and hence explain heapsort with an example.

Ans:-
Algorithm Heap sort (a,n)

// a[i:n] contains n elements to be sorted

// Heap sort re-arrange then and place

// into non-decreasing order

{ heapify (a,n); // transform the array

 // into heap interchange the new for i=n to 2 step-1 do

 // max. element with the element at the end of array

{

t:=a [i]; a [i]: = a[i];

 a[1] = t;

 Adjust (a,1,i-1);

}

}

Simulate the action of heap sort on the following: -

100,119,118,171,112,151,132

	1
	2
	3
	4
	5
	6
	7

	100
	119
	118
	171
	112
	151
	132

Ex: a →

Heapify (a,7)

Action of heapify on a

	1
	2
	3
	4
	5
	6
	7

	100
	119
	151
	100
	112
	118
	132

i = 7

t = 132

a [7] = 171

a [1] = 132

	1
	2
	3
	4
	5
	6
	7

	132
	119
	151
	100
	112
	118
	141

 a (
Adjust (a,1,6)

Action of adjust (a,1,6)

i = 6

t = 118

a[6] = 151

a[1] = 118

adjust (a,1,5)

	1
	2
	3
	4
	5
	6
	7

	118
	119
	132
	100
	112
	151
	171

 a →
Action of adjust (a,1,5)

i=5

t = 112

a[5] = 132

a[1] = 112

Adjust (a,1,4)

	1
	2
	3
	4
	5
	6
	7

	112
	119
	118
	100
	132
	151
	171

 Action of adjust (a

	1
	2
	3
	4
	5
	6
	7

	100
	112
	118
	119
	132
	151
	171

a = 4

t = 100

a(4) = 119

A{1} = 100

Adjust (a,1,3)

i = 3
 t = 100
 a [3] = 118
 a [i] = 100
 Adjust (9,1,3)
Action adjust (a,1,3)

	1
	2
	3
	4
	5
	6
	7

	100
	112
	118
	119
	132
	151
	171

Action of adjust (9,1,2)

	1
	2
	3
	4
	5
	6
	7

	100
	112
	118
	119
	132
	151
	171

 i = 2

 t = 100

 a [2] = 112

 a [1] = 100

The heap sort algorithm UIES heapify to convert the given array of elements in to a max heap and it then readjusts the many so that the elements of the array will be in the sorted order.

Analysis: - The worst car time for heapify is a each invocation of adjust requires O (logn) comparisons in the worst case. (The worst case time for heap sort is given by O (n logn)

Determine the no. of step counts in the execution of the following algorithm. used to compute the nth Fibonacci number

→ Algorithm Fibonacci (n)

// Compute the nth Fibonacci no/:

1,2 [if (n≤ 1) then

 3 write (n);

 4 else

5,6 [f2:=0; f1: = 1;

 7 for i=2 to n do

8,9 [f:=f1: = f2;

 10 f2: = f1; f1: = f;

 11 }

 12 write (f);

 13 }

 14 }
Case – 1: - The above algorithm has two execution parts. When n= 0 or 1 then the line 2 and line 3 are executed each requires one step so the no/: of steps will be 2.

Case – 2: - When n>1. Line 2 one step, line 6 no/: of statements per execution is 2 and line 6 is executed once. The no/: of steps is 2. In line 7 for the loop is executed n-1 times (i.e. 2 to n) and one more time the line 7 is executed when the condition becomes false. So, the no/: of steps at line 7 is ‘n’. The statement 9 is executed (n-1) times which require (n-1) steps. The line 10 is executed (n-1) times with 2 statements per execusion requires 2x(n-1) steps. The 12th line requires 1 step.

(The total no/: of steps will be 1+2+n+(n-1)+ 2(n-1)+1 = 4+n+n-1+2n-2 = 4+2n+2n-3 = 4n +1

→ Algorithm Fibonacci

// print the Fibonacci series

1 {

2 f1: = 0:f2: = 1

3 write (f1) ; write (f2);

4 for 1: = 3 to n do

5,6
{ f3:= f1+f2;

7
 write (f3);

8
f1:= f2; f2:=f3;

9

}

10
}

Analysis: -
Line 2
-2

Line 3
-2

Line 4
- n-1

Line 6
- n-2

Line 7
- n-2

Line 8
- 2(n-2)

 5n -5
Q) Define Hashing and explain several hashing techniques?
Ans:-
HASHING: -

Hashing uses a hash function to map keys in to positions in a table called hash tables. The ideal hash table data structure is an array of some fixed size containing the keys. When element ‘e’ has the key ‘k’ and if ‘f’ is the hash function then ‘e’ is stored in the position f(k) of the table. To search for an element with key ‘k’ we compute f(k) and see it there is an element at the position f(k) of the table. If so the element is found. Otherwise the table does not contain an element with a given key.

Each key is mapped in to some umber in t he range 0 to 0 table size-1 and is placed in the appropriate cell. The mapping is called as a hash function. Which ideally should be simple to compute and should ensure that any two district keys will get different cells. Since there are finite no. of cells and a virtually inexhaustible supply of keys, this is clearly impossible, and thus a hash function is needed which distributes the keys evenly among the cells.

COLLISION: - When an element is inserted, if it hashes to the same value as an already inserted element then we have a collision. The two methods used for resolving the collision are…

(i) Linear Open addressing (Linear probing)

(ii) Separate chaining (Linked probing)

LINEAR OPEN ADDRESSING: -

When a key range is too large we use a hash table whose size is smaller than the range and a hash function that maps servant different keys into the same position of the hash table.

If hashing is done using division method then hash function will be of the form f(k) = k % D where ‘k’ is the key, ‘D’ is the size of the hash table. The positions in the hash table are indexed from 0 to d-1. Each position is called as a bucket. F(k) is called as the home bucket for the element with key value ‘k’. Under favorable circumstances the home bucket is the location of the element with key value ‘k’.

Ex: -
	ht -->
	
	
	
	80
	
	
	
	40
	
	
	65

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

The above example shows a hash table ht with eleven buckets numbered 0-10. The divisor‘d’ here is ‘11’. ‘80’ is in position ‘3’ because 80% 11 = 3 similarly, 40% 11 = 7 and 65% 11= 10. Each element is in its home bucket. The remaining buckets in the hash table over empty.
If we wish to enter 58 in to the table then the home bucket will be 7(58) = 58% 11= 3. As the bucket 3 is occupied by 80 cue say a collision has occurred. In general a bucket may contain space for more than one element, if so a collision may not create any difficulties. And overflow occurs if there is no room in the home bucket for the new element. But since in the above example each bucket has space for only one element, collisions and overflows occur at the same time. Hence to insert 58 we have to search the table for the next available bucket and place it there. This method of handling overflows is called as linear open addressing.

	ht -->
	
	
	
	80
	58
	
	
	40
	
	
	65

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

The search for an element is carried out by beginning at the home bucket f(k). If the element is not found there search tree successive buckets continuously units any of the following situation is encountered.
(i) A bucket containing an element with key ‘k’ is reached, in which case the element which we are finding is found.

(ii) An empty bucket is reached

(iii) We return back to the home bucket.

SEPARATE CHAINING: -

	0
	
	
	

	0
	
	
	
	

	1
	
	
	
	1
	
	
	81
	

	2
	
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	
	

	4
	
	
	
	4
	
	
	64
	

	5
	
	
	
	25
	
	
	
	

	6
	
	
	
	14
	
	
	36
	

	7
	
	
	
	
	
	
	
	

	8
	
	
	
	
	
	
	
	

	9
	
	
	
	9
	
	
	49
	

	10
	
	
	
	
	
	
	
	

The above hash table the keys are the first ten perfect square and the hashing function is hash (x)= x mod 10
Whenever a collision occurs the key is placed in a new node and inserted in to the list of nodes which are colliding a t the home bucket i.e. a linked list is maintained for each bucket which contains the nodes whose addresses collide with the corresponding home bucket.
Q) Briefly explain various hashing functions?

Ans:-
TYPES OF HASHING FUNCTIONS:-

1) The Division Method
2) The Mid-square Method

3) The Folding Method

4) Digit Analysis Method

5) The Length Depended Method

6) Multiplicative Hashing
1) Division Method: - H9n) = x mod m+1

In mapping keys to address, the division method preserves, to a certain extent the uniforming that exists in a key set. Key’s which are closed to each other or clustered are mapped to unique addresses.

The general it is un common for a number of keys to yield the same reminder where M is a large prime number.

2) The Mid-square Method: - In this method, a key is multiplied by itself and the address is obtained by selecting an appropriate no. of bits or digits from the middle of the square. Usually the number of bits or digits choosen depends on the table size and consequently can fit in to one computer word of memory. The same position in the square must be used for all products.
3) Folding Method: - In the folding method a key is partitioned in to a number of parts each of which has the same length as the required address with the possible exception of the lout part. The parts are then added together ignoring the final carry to form an address.

For example the key 35694781 is to be transformed in to a 3 digit addresses then the key is divided in to parts as 356,942, 781

356

942

781

 079

4) Digit Analysis Method: - A hashing function referred as digit analysis forms addresses by selecting and shifting digits or bits of the original key.
For example a key 1234567890 is transferred to address 9542 by selecting the digits in the positions 2459 and reversing their order.

5) Length Dependent Method: - This method is commonly used in table handling applications. In this method the length of the key is used along with some portion of the key to produce either a table address directly or an intermediate key is used.
6) Multiplicative Hashing: - The multiplicative hashing function is quick useful for a non-negative integral key x and constant ‘c’ such that 0<C<1, the function is defined as H(x) = m (x mod 1) + 1
Here x mod 1 is the fractional part of c x
· Determine the frequency counts for all the statement in the following

(i) for i = 1 to n do (1)

(ii) for j = 1 to I do (2)

(iii) for k = 1 to j do (3)

x: = x+1 stat

(1)

(2)

(3)

 (4)

for 2

2

2

1

for 3

 2+3

 2+(2+3)

 1+(1+2)

for 4

 2+3+4

2+(2+3) + (2+3+4) 1+(1+2) + (1+2+3)
for 5

.

.

.
for 6

.

.

.

for 7

.

.

.

for 8

.

.

.
for 9

.

.

.

for (n+1)
 ∑n+1

[image: image6.wmf]2

)

3

(

+

S

n

n

[image: image7.wmf]2

)

1

(

+

S

n

n

 =
[image: image8.wmf]2

)

3

(

+

n

n

 =
[image: image9.wmf]12

)

10

2

(

)

1

(

+

+

n

n

n

 =
[image: image10.wmf]12

)

4

2

(

)

1

(

+

+

n

n

n

i.e. (n+1) +
[image: image11.wmf]12

)

4

2

(

)

1

(

12

)

10

2

(

)

1

(

2

)

3

(

+

+

+

+

+

+

+

n

n

n

n

n

n

n

n

=
[image: image12.wmf]6

1

= (2n3 + 12n2+6)
Q) Define a Recursive algorithm? Explain the procedure to convert an iterative algorithm to a recursive algorithm.

Ans:-
RECURSIVE ALGORITHMS:
An algorithm calling itself continuously until some termination condition is satisfied is called as recursion.
There are 2 types of recursion

(i) Direct Recursion

(ii) Indirect Recursion

i) Direct Recursion: - A function calling itself is called as direct recursion.

ii) Indirect Recursion: - A function ‘A’ calls another function ‘B’ and the function ‘B’ inturn calls A recursively. This is called as indirect recursion.

Conversion of an iterative algorithm in to a recursive algorithm: -

Any algorithm return by using assignment, if then else, and an iterative loop (for, while) can be written using assignment, if then else and recursion.

· Write an iterative algorithm to calculate sum of the digits of a given number
Algorithm I sod (n)

// n is the input;

{

sum: = 0;

While (n>0)

{ rem: = no/: 10;

sum: = sum + rem

n: = n/10;

}

write (sum);

}

Algorithm R sod (n)

// n is input
{

sum: = 0;

if (n==0) then

return (sum);

rem: = n % 10;

sum: = sum + rem;

R sod (n/10);

}

· CONVERSION OF RECURSIVE TO ITERATIVE: -
Let ‘P’ denote a recursive function (direct) for which the actual parameters called by add rest in ‘p’ are the same in every call to p. We can translate ‘P’ in to a non-recursive function by inserting statement labels and go to statements.

STEP – 1: - Declare a stack to hold local variables, parameters called by value and flags which indicate from where ‘P’ is called (In case if ‘P’ is called from more than one place). As the first executed statement of P initialized the stack to be empty by setting the counters to zero. The stack and the counters must be treated as global variables.

STEP -2: - To enable each recursive call to start at the beginning of the original function P, the first executable statement of the original ‘P’ should have a label attached to it.

 The following steps are to be performed at each place inside ‘P’ where ‘P’ calls itself.

STEP -3: - Make a new statement label Li (if this is the ith place where ‘P’ is called recursively) and attach the label to the first statement after the call to P.

STEP -4: -Push the integer I on to the stack. (This will convey on return that P was called from the ith place)

STEP: - 5: - Push all the local variables and the parameters called by value on to the stack.

STEP – 6: - Set the dummy parameters called by value to the values given in the new call to ‘P’

STEP – 7: - Replace the call to ‘P’ with a “goto” to the statement label at the start of P. At the end of P (or where eves P returns to its calling program the following steps should be done.
STEP – 8: - If the stack is empty then the recursion has finished and make a normal return.

STEP – 9: - Otherwise pop the stack to restore the values of all local variables and parameters called by value.

STEP – 10: - Pop an integer I from the stack and use this to go to th statement labeled L i .

Explain how do you convert recursive procedure b a non-recursive equivalent procedure?

A. Before moving to the process of converting a recursive fun to non-recursive. It would be much better of the mechanism, the commonalities and differences hardware then are understood first.

RECURSIVE FUNCTION: -

As name itself says a recursive is a function which calls itself.

· A function in said to be direct recursive off it calls itself in one of its statements.

· In the other hand, in indirect recursive a function ‘A’ calls another function ‘B’ which is turn calls function ‘A’. This process of calling itself continues until a lose condition in reached.
· i.e. a problem is subdivided into many parts and each part is assigned to each version of the function.

· The subdivision of the main problem continues until a base condition is reached, one’s the box condition is reached, the result produced by it is given back to the earlier version of the function.

· The result produced by this version is again given back to its calling fun. This is known as a divider and conquest strategy.

· That means, the main problem in divided into smaller path and later those paths are combined to produce cooperative res.

ITERATIVE FUNCTION: -

An iterative function repeats the execution of the statement written in its body until a specific condition is reached.

· It goes has 3 parts (for) Loop.

i) The first part initializes a control variable to a specific value.

ii) The second part cheeks for the condition. If the condition, ------------------ there only the body is executed else not executed.

iii) The third clear which the incremental/ decremented

Q) Distinguish between Recursion and iteration with an example.
	RECURSION
	ITERATION

	1) It is based on control structure
	1) It is also based on control structure

	2) It uses the control structure such as if, if else, switch
	2) It uses the repetitive structure such as for, while (or) do- while which are loops

	3) It involves repetitive by calling itself
	3) It involves repeation by explains using repetitive structure

	4) It gets terminated when the be use care is reached
	4) It gets terminates when loop condition is failed

	5) It gets infinite if the recursion step does not reduce the problem
	5) It gets intonate if the loop termination condition does not fail

	

	RECURSIVE FUNCTION
	ITERATIVE FUNCTION

	Algorithm

Recursive : - fibonacci (n)

{

if [(n=0):: (n=1)

return n;

fibonacci (n-2);

else

return Recursive–function (n-1) + Recursive

}

fibonacci numbers using recursion

	Algorithm fibonacci (n)

//compare the nth fibonacci number

{

if (n≤1) then

write (n);

else

if1 = 0; f2 = 1;

for i: = 2 to n do

{

fi = f1+f2;

f2:fi: f1 = fi;

}

write (fi);

}

OTHER IMPORTANT QUESTIONS: -
1. What is an adjacency matrix explain with the help of an example.
2. What are the different representations of graphs? Discuss with suitable examples.

3. Briefly explain about adjacency matrices and lists.
4. Explain with the help of an example the two ways of representing graphs.

Reference Books:-
1. Fundamentals of Computer Algorithms, Horowitz & Sartaj Sahani
BEST OF LUCK
[image: image13.png]

top

r

f

60

50

40

30

0

1

2

3

4

5

f

r

A

D

C

H

G

F

E

P

O

N

M

L

K

J

I

B

3

7

1

43

35

20

27

15

25

11

3

25

1

1

1

43

35

20

10

27

15

2

1

30

5

40

2

40

80

2

5

30

2000

6000

3000

3000

4000

2000

1000

N

2

N

6000

40

N

3000

N

5

4000

30

1000

N

80

N

N

2

N

6000

40

N

3000

N

5

4000

30

1000

N

80

N

N

35

N

1000

4000

5000

6000

7000

3000

N

2

7000

6000

40

N

3000

N

5

4000

30

2000

N

80

N

N

1

N

1000

2000

4000

6000

5000

3000

4000

7000

1000

5000

40

N

N

N

i

4000

7

7000

N

80

N

N

1

N

5000

40

N

7000

N

2

4000

2

3000

N

80

N

1000

4000

5000

7000

C3

V4

V3

C5

C2

C4

C6

V2

V1

C1

V1

V5

V4

V3

V2

C7

C6

C5

C4

C3

C2

C1

V4

V3

V1

V2

V6

V5

V4

V3

V7

V2

V1

V8

V9

V6

V5

V3

V4

V7

V2

V1

V6

V5

V3

V4

V7

V2

V1

V1

V2

V3

V4

V5

V6

V7

V4

V3

V5

V6

V7

V1

V2

V7

V6

V5

V4

V3

V2

V1

V4

V4

V6

V6

V5

V5

V8

V8

V7

V7

V3

V3

V2

V1

V2

V1

1

1

1

2

3

4

2

2

3

7

6

5

4

3

1

2

6

7

5

4

3

1

3

2

80

40

35

90

80

40

40

35

40

20

90

80

35

40

45

50

90

80

70

90

45

90

80

50

40

45

35

70

90

80

70

40

45

35

50

80

45

70

40

35

50

90

80

45

70

40

35

50

90

90

45

80

40

35

50

70

90

45

80

40

35

50

70

80

45

70

40

35

50

60

80

45

70

40

35

50

60

100

100

119

117

171

112

151

152

100

119

151

171

112

118

132

100

119

151

171

112

118

132

171

171

151

119

112

118

132

171

119

151

100

112

118

132

171

119

151

100

112

118

132

171

151

119

118

112

100

132

132

132

119

132

119

118

112

100

118

112

100

132

100

112

119

132

132

100

112

119

132

a(

119

100

112

118

112

118

119

100

a(

117

100

117

118

100

112

a(

a(

100

112

Llaa lvvkv;vlhhhh

_1295699264.unknown

_1295699340.unknown

_1295699427.unknown

_1295699543.unknown

_1295699382.unknown

_1295699307.unknown

_1295699218.unknown

