Unit –II


Divide and Conquer:- The general method, Binary search, Finding maximum and minimum, Merge sort, Quick sort and selection sort, STRASSEN’S Matrix Multiplication.
Greedy Method:- Knapsack Problem, Tree vertex splitting, Optimal Storage on tapes, Job sequencing with deadlines, Optimal Merge Pattern, Minimum Spanning Trees and Single source shortest paths.
Q) Explain the divide-conquer strategy with the help of an example. 

Q) Explain the techniques of Divide and Conquer with the help of an example. 

Ans:-
Divide and Conquer Strategy:-


The principle behind this strategy is that it is easier to solve several small instances of a problem than one large complex problem. The “divide - and - conquer” technique involves in solving a particular computational problem by dividing it into smaller sub problems, solving the problem recursively and then combining the results of all the sub problems to produce the result for the original complex problem ‘P’.

The strategy involves three steps at each level of recursion.

1. Divide:- Divide the problem into a number of sub problems.
2. Conquer:- Conquer the sub problems by solving them recursively. If the sub problem sizes are small enough, then just solve the sub problems in a straight forward manner.
3. Combine:- Combine the solutions to the sub problems to form the solution for the original problem.
 Let ‘n’  represent the size of the original problem. Let S(n) denote this problem. We solve the problem S(n) by solving a collection of k sub problems- S(n1),S(n2),…S(nk), where ni<n for i=1,2,..k. Finally we merge the solutions to these problems. 
Skeleton of Divide and conquer Startegy:-

Let ‘n’ be the maximum size of the problem. The number of smaller instances into which the input is divided is k. For an input of size ‘n’ Let
B(n) – no. of steps done to solve directly.

D(n) – no. of steps done by divide and let

C(n) – no. of steps done by combine.


Then the general form of the recurrence equation describes the amount of work done by the algorithm which is

T(n)=D(n)+
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  for n > smallsize.
Solve(I)


n= size(I);


if(n≤ smallsize)



solution=directlysolve(I);


else



divide I into I1,..Ik;



for each i( I1,..Ik



    Si=Solve(Ii);


solution=Combine(S2,…Sk);

return solution.

Q) Write and explain the control abstraction for divide- and- conquer method.     
Q) Give the control abstraction of divide-and-conquer. 

 

Ans:-
Control Abstraction For Divide and Conquer:-


A control abstraction is a procedure that reflects the way an actual program based on DAndC will look like. A control abstraction shows clearly the flow of control but the primary operations are specified by other procedures. The control abstraction can be written either iteratively or recursively.

If we are given a problem with ‘n’ inputs and if it is possible for splitting the ‘n’ inputs into ‘k’ subsets where each subset represents a sub problem similar to the main problem then it can be achieved by using divide and conquer strategy.


If the sub problems are relatively large then divide and conquer strategy is reapplied. The sub problem resulting from divide and conquer design are of the same type as the original problem. Generally divide and conquer problem is expressed using recursive formulas and functions.


A general divide and conquer design strategy(control abstraction) is illustrated as given below- 


Algorithm DAndC (P)


    {



if small(P) then return S(P) //termination condition



else



  {




Divide P into smaller instances P1, P2, P3… Pk k≥1; or 1≤k≤n




Apply DAndC to each of these sub problems.




Return Combine (DAndC(P1), DAndC (P2), DAndC (P3)…

 DAndC (Pk)




  }


    }


The above blocks of code represents a control abstraction for divide and conquer strategy. Small (P) is a Boolean valued function that determines whether the input size is small enough that the answer can be computed without splitting. If small (P) is true then function ‘S’ is invoked. Otherwise the problem ‘P’ is divided into sub problems. These sub problems are solved by recursive application of Divide-and-conquer. Finally the solution from k sub problems is combined to obtain the solution of the given problem.
If the size of ‘P’ is ‘n’ and if the size of ‘k’ sub problems is n1,n2,…. nk 
Respectively then the computing time of DAndC is described by the recurrence relation.


T(n) 
= g(n)





when n is small




= T(n1)+ T(n1)+ T(n2)+…….+ T(nk)+ f(n)
otherwise.


T(n) denotes the time for DAndC on any input of size ‘n’.


G(n) is the time to compute the answer directly for small inputs.


F(n) is the time for dividing ‘P’ and combining the solutions of sub problems.

Q) Give the analysis of the complexity of the divide and conquer strategy. 

Ans:-


To analyze the running time of a divide and conquer algorithms we make use of a recurrence relation. A function T(n) denotes the running time of the algorithm on an input of size ‘n’ and characterize T(n) using an equation that relates T(n) to values of the function T for problem sizes smaller than n.

The recurrence relations are of the form.




T(n) 
= T(1)



n=1





= aT(n/b)+f(n)

n>1


where a,b are known constants. We assume that T(1) is known and nis a power of b (i.e., n=bk).

Iterative Substitution Method (plug-and-chug Method):-

A method that repeatedly makes substitution for each occurrence of the function T in the right-hand side until all such occurrences disappear is called substitution method.


In this method we assume that the problem size ‘n’ is fairly and we then substitute the general form of the recurrence for each occurrence of the function T on the right hand side. By using this technique we can determine a general pattern for T(n).

Example:-

Consider the case in which a=2 and b=2. Let T(1)=2 and f(n)=n. then we have



T(n) 
= 2T(n/2)+n




= 2[2T(n/4)+n/2]+n



= 4T(n/4)+2n




= 4[2T(n/8)+n/4]+2n




= 8T(n/8)+3n




=
.




.



= 2i T(n/2i)+in , for any log 2 n ≥ I ≥ 1.




= 2 log 2 nT(n/ log 2 n)+n log 2 n, corresponding to the choice of i= log 2 n. Thus 

T(n)
= n T(1)+n log 2 n 

= n log 2 n+2n
Q) Write an algorithm for performing binary search for any element in an array. 









Ans:-

Problem:- Let ai, 1≤ I ≤ n , be a list of elements that are sorted in non decreasing order. We need to determine whether a given element ‘x’ is present in the list. If ‘x’ is present, then ‘j’ is determined such that aj=x. if x is not in the list, then j is to be set to zero.

Solution:- Every call to the binary search splits the partition into two in the middle according to the formula 




Mid = 
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 where low is the index of the first element of the partition and high is the last element of the partition. Generally the ‘n’ inputs are sorted in A[1..n] array. The splitting process terminates when the size of the partition becomes ‘1’ or required element is found.
Algorithm BinSearch (A, l , h,  x)
//Given an array A[l :h  ] of elements in non decreasing order , 1≤ l ≤ h
//Determine whether x is present, and if so return j such that x=A[j]; else return 0.
{



if (l=h) then



{



   If(x=A[h]) then return h; //If Small (P)



   else return 0;



}



else



{//reduce P into a smaller sub problem.



  Mid :=[(l +h)/2];



   If(x=A[mid]) then return mid;



   Else if(x<A[mid]) then



 
Return BinSearch (A, l, mid-1, x);



    Else return BinSearch (A, mid+1, h, x);



}


}

The above algorithm is a recursive binary search algorithm. 
Explanation:
The problem is subdivided into smaller problems until only one single element is left out.
1. If low = high then it means there is only one single element. So compare it with the search element ‘x’. if both are equal then return the index, else return 0.

2. If low ( high then divide the problem into smaller subproblems.

a. Calculate mid = (low+high)/2.

b. Compare x with element at mid if both are equal the return index mid.
c. Else if x is less than A[mid] then the element x would be in the first partition A[l:mid-1]. So make a recursive call to BinSearch with low as l and high as mid-1.

d. Else x is greater than A[mid] then the element x would be in the second partition A[mid+1: h]. So make a recursive call to BinSearch with low as mid+1 and high as h.

Algorithm BinSearch (a, n, x)
//Given an array a[1:n] of elements in non decreasing order, n≥0, 

//determine whether x is present, and if so return j such that x=a[j]; else return 0
{


low:=1;

high:=n;


while(low ≤ high) do


{



mid:=[(low+high)/2];



if(x<a[mid])then high:=mid-1;



else if(x>a[mid])then low:=mid+1;



else return mid;


}


return 0;

}

The above algorithm is an iterative algorithm for Binary search.

Analysis:-


If n is in the range [2k-1,2k] , then BinSearch makes at most k element comparisons for a successful search and either k-1 or k comparisons for an unsuccessful search.


The algorithm can be better understood with the help of a decision tree.

Example:-

The keys are 

-15,-6,0,7,9,23,25,54,82,101,112,125,131,142,151.

The no. of comparisons needed for a successful search for the above given keys can be determined using a decision tree as follows. A decision tree is drawn using the values of mid for every call. Circle( O ) represents an internal node and rectangle represents an external node.
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	-15
	-6
	0
	7
	9
	23
	25
	54
	82
	101
	112
	125
	131
	142
	151

	Low
	mid
	high



[image: image3]



Each and every internal node represents a successful search and the values denoted by internal nodes are the various values taken by the variable mid. If the value of mid is at level zero then the no. of comparisons for an element present at the position is one.

The no. of comparisons for a successful search if the mid value is at level one is two and the max. No. of comparisons for a successful search in the above decision tree is equal to four. i.e., the max. No. of comparisons is directly proportional to the height of the tree. Therefore the time complexity for a successful search is given by O (log2 n).

Each and every unsuccessful search terminates at an external node. The no. of comparisons needed for an unsuccessful search of an element less than -15 is 3. For the entire remaining unsuccessful search the no. of comparisons made is 4. Therefore the average no. of elemental comparisons of an unsuccessful search is

 

[image: image4.wmf]4

93

.

3

15

59

15

14

*

4

1

*

3

@

=

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

+



Except for one case the no. of comparisons for unsuccessful search is constant and is equal to the height of the tree. Therefore the time for unsuccessful search is given by O (log2 n).
Finding the Maximum and Minimum: -
Q) Write an algorithm which uses divide and conquer method for finding the maximum and minimum items in a set of elements. 




Q) Develop a recursive algorithm for finding the maximum and minimum items in a given set of elements, also give the time complexity of the algorithm. 
Ans:- 

Problem: - ‘n’ inputs are given which are stored in a global array and we need to find non and min of those elements.

The problem could be solved by applying divide and conquer and splitting the problem in to sub-problems until the size of the partition is sufficiently small i.e. until  small (p) is satisfied. The splitting of the partition will terminate in two cases.

i) When the size of the partition is 1 i.e. (i=j)

ii) When the size of the partition is 2 i.e. (i=j-1)

(That is i is one less than j) // two elements lie on the partition.

Design:-

Algorithm MaxMin (i, j, max, min)


//a[i=n] is a global array i and j are integers


//1≤i≤j ≤n. the effect is to set man and


// min to largest and smallest value in a (i=j) resp.


{


if (i=j) then 
max:=min:=a(i); //small(p)


else if (i=j-1) then


{



if (a(i) < a(j)) then



{
max:=a(j) ; min:=a(i);



}



else



{


max:=a[i];min:=a[j];
}

}

else

{ 
//if p is not small, divide p

  
// into sub problems

  
mid:=[(i+j)/2];

//solve the sub problems

MaxMin (I,mid,max,min);

MaxMin (mid+1, j, max 1, min 1);

If (min>min1) then min:=min1;

}

}
Example:-
· Simulate the algorithm Max min for the following elements:

22, 13, -5, -8, 15, 60, 17, 31, 47

                                     1          2             3             4           5           6             7           8            9
	22
	13
	-5
	-8
	15
	60
	17
	31
	47


               a
                      
                                     Max Min (1, n, x, y)


                                                                                        Max Min 

                                                                            (9)             

       

                                           (7)                                                             (8)
                            (3)                            (4)                             (5)                            (6)
       (1)                               (2)
The circled numbers in the upper left corner of each node represent order in which the variables Max and Min are assigned values.

Q) Prove that the complexity of max-min algorithm using divide and conquer is T(n)= 
[image: image5.wmf]2

32

-

n

 where n, the number of elements is a power of two.  




Analysis: - The no. of elemental comparisons required by the Max Min algorithm is given by the recurrence relation.


T(n) =  T [n/2] + T[n/2]+2
if n>2

1 if n=2

0 if n=1

If ‘n’ is power of 2 than we have 

T(n) = 2T 
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The no/: of comparisons in the best and worst and average case for the algorithm Max Min is given by 3n/2 – 2

Q) Describe about Merge sort. 







Q) Explain how divide and conquer strategy can be applied for merge sort, and develop an algorithm for the same. Give its time and space complexity. 
Ans:-Merge Sort: -

            The divide and conquer strategy for the merge sort divides the problem with ‘n’ inputs into ‘k’ sub problems by dividing each partition recursively in the middle until the ‘p’ (small) is satisfied i.e. until the size of the partition is one. Then the merge algorithm will merge the sub problems recursively until the solution for the entire problem is being obtained.

The merge algorithm is applied on two sub lists which are in sorted order.

1. Divide:- Divide the n-element sequence to be sorted into two sub sequences of n/2 elements each.
2. Conquer:- Sort the two subsequences recursively using merge sort.

3. Combine:- Merge the two sorted subsequences to produce the sorted answer.

Q) Write an algorithm to do merge sort for the given array of elements. 
Q) Write an algorithm for merge sort. 
Q) Given two sorted lists of size ‘m’ and ‘n’ respectively. To merge these lists using merge sort how many comparisons are needed? Justify your answer. 
Q) Describe about Merge sort with algorithm and suitable example. 
Q) Explain the features of Merge sort as an example algorithm in the paradigm of divide and conquer. Illustrate the algorithm with an example of ten items to be stated. 

Algorithm Merge sort (low, high)

// a (low: high) is a global array to be sorted


// small (p) is true if there is only one element


// to sort, which means the list is already sorted


{  // if (low<high) then // if there is more than one element


{  // Divide p in to sub problems


                      mid:= 
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   // solve the sub problems


                      Merge sort (low, mid);


                      Merge Sort (mid+1, high);


  // combine solutions

                    Merge (low, mid, high)


}

}

Simulate divide strategy of merge sort on the following keys

310, 285, 179, 652, 351, 423, 861, 254, 450, 520

The tree of calls initiated by the merge sort will be as follows.


(1) a(1,1) is merged with a(2,2) to give a (1,2)

                     285, 310/ 179/ 652, 351/ 423, 861, 254, 450, 520

(2) a(1,2) is merged with a (3,3) to give a (1,2,3)

                     179, 285, 310/ 652, 351/ 423, 861, 254, 450, 520

(3) a (4,4) is merged with a (5,5) to give a (4,5)

                    179, 285, 310/ 351, 652/ 423, 861, 254, 450, 520

(4) a (1,3) is merged with a (4,5) to give a (1,5)

                    179, 285, 310, 351, 652/ 423, 861, 254, 450, 520

At this point the algorithm merge sort will return to the first invocation and is about to process the second recursive call repeated recursive calls are invoked producing the following sub-arrays.

(5) a(6,6) is merged with a(7,7) to give a(6,7)


179, 285, 310, 351, 652/423, 861/ 254/ 450, 250

(6) a(6,7) is merged with a(8,8) to give a (6,8)


179, 285, 310, 351, 652/ 254, 423, 861/ 450, 520

(7) a (9,9) is merged with a(10,10) to give a (9,10)


179, 285, 310, 351, 652/254, 423, 861/ 450, 520

(8) a (6,8) is merged with a (9,10) to give a (6,10)


179, 285, 310, 351, 652/ 254, 423, 450, 520, 861

(9) a (1,5) is merged with a (6,10) to give a (1,10)


179, 254, 285, 310, 351, 423, 450, 520, 652, 861

· Algorithm Merge (low, mid, high)


// a (low: high) is a global array containing


// two sorted subsets in a (low: mid) and in


// a (mid+1, high). The goal is to merge these two


//subsets in to a single set residing in a (low: high)


// b[ ] is a temporary global array.


{


h:=low, i:=low; j=mid+1;


while ((h≤mid) and (j≤ high)do


{ if (a(h) ≤ a(j)) then


{ b(i) = a(h); :=h+1;


}


i:=i+1;


}


if (h>mid) then


for k=j to high do


{ b(i): = a(k);


     i: = i+1;


}


else


for k:=h to mid do


{


    b(i)(=a(k); i:=i+1;


}


for k: = low to high do



a(k): = b(x);


}

· Simulate merge sort on the following sub list.

Merge (low, mid, high)

H=1, i=1, j=6, mid=5, high=10

While ((h ≤ mid) and (j ≤ high))

       Left sub list             Right sub list

      no 1 executed          No. 1 executed

h=2, i=2, j=6


mid =5, high =10

h=2, i=3, j=7


mid =5, high =10
h=3, i=4, j=7


mid =5, high =10
h=4, i=5, j=7


mid =5, high =10
h=5, i=6, j=7


mid =5, high =10
h=5, i=7, j=8


mid =5, high =10
h=5, i=8, j=9


mid =5, high =10
h=5, i=9, j=10

mid =5, high =10
h=6, i=10, j=10

mid =5, high =10
Out of while (h ≤mid) – false

K=10 to (j to high)

i.e. 861 is copied to b

	179
	285
	310
	351
	652
	254
	423
	450
	520
	861


b ( 
             1        2       3      4       5       6       7        8       9       10

Tree of calls of merge


Q)By means of an example demonstrate how merge sort works. Derive the timing and space complexities of the same. 
Analysis: -

If the time for merging operation is proportional to ‘n’ then the computing time for merge sort is described by the recursion relation.



 a n=1, a is constant

 T(n) 
 2 T(n/2) + cn, n>1, c is constant


When n is power of 2 then 

T(n) 
= 2 
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                              = 2k T(1) + Kcn    2k = n


= an+cn logn
      k = log2 n


           2 k < n ≤ 2 K+1


Then T(n) ≤ T (2 K+1)


T(n) = 0 (n log2n)

Q)Give the quick sort algorithm and illustrate the method with suitable example. Also derive the time complexity for an average case. 
Q) Describe quick sort algorithm and explain it with an example. Discuss its time complexity. 








Q) Develop an algorithm for quick sort using divide and conquer strategy. Find its time and space complexity both for average and worst cases.

Q) Give an algorithm for quick sort.Analyse its complexity. On what input data does quick sort exibhit its best and worst behavior. 

Q) Give the partition and Quick sort algorithms and analyse them in detail. 

Q) Show how quick sort sorts the following sequence of keys. 


5  5  8  3  4  3  2.





Q) Show how procedure QUICKSORT sorts the following sets of keys:

     (1,1,1,1,1,1,1) and (5,5,8,3,4,3,2). 




Q) Write and explain the Quick sort Algorithm. 

Q) Describe about quicksort. 






Q) Derive the average-case timing complexity of quicksort. 
Q) Do the average case analysis of the quicksort algorithm. 

Quick Sort: -

          In the divide and conquer of quick sort we recursively divide the inputs into sub lists until the small (p) condition is occurred. The partitions in this are formed unlike the other problems involved in divide and conquer. In every execution of quick sort the partition location ‘j’ is determined where ‘j’ is the location of an element place in its sorted order. Then we form two partitions from 1st element of the partition to j-1 and j+1 to the lout element of the partition.

· Steps in Partition algorithm: -

Step - 1: - Initially we take ‘p’ pointing to the first element and q pointing to the last element i.e. p is the location of 1st element q is the location of last element.

Step - 2: - Initialize i:=p and j:q+1

Step - 3: - Increment I until we find an element which is greater than the element present at location ‘p’

Step - 4: - Decrement j by 1 until we find an element which is less than the element present at location ‘p’

Step - 5: - If i<j then swap (a(i), a(j))

Step - 6: - If i>j swap (a(i), a(p))

Step – 7: - If i>j then we get two partitions i.e. two sub lists from (p,j-1) and 
(j+1, q)

Step – 8: - Solve each sub problem recursively until p becomes greater than q

Algorithm Quick sort (p, q)

// sorts the elements a(p)……., a(q)

// which reside in global array a(1:n) in to assending

// order; a (n+1) is considered to be defined and must be

// ( all the elements in a (1,n)

{ if (p<q) then // if there is more than one element

{//divide p into sub problems



j:= partition (a,p,q+1);



//j is position of partitioning element



//solve the sub problems



quicksort (p,j-1);



quicksort (j+1,q)



//need not combine the solutions


}

                  }

Algorithm partition (a,m,p)

{ v:=a(m); i=m; j:=p;

      repeat

      { repeat


f= i+1;


until (a(i) (v);


repeat


j:=j-1;


until (a(j) ≤v);


if (i<j) then interchange (a,i,j)

} until (i>j)

a (m):= a(j); a(j):=v; return j;

}

Algorithm Interchange (a,i,j)
//echaange a(i) with a (i)

{ p: = a(i);

  a(i): = a(j);

  a(j): = p;

}

Example:
26, 5, 37, 1, 61, 11, 59, 15, 48, 19

  1     2    3     4     5      6      7       8      9     10
26, 5, 37, 1, 61, 11, 59, 15, 48, 19  

ip                                             q j (q+1)


26, 5,  37    , 1, 61, 11, 59, 15, 48,  19                  i<j

            i                                           j            Swap a (i) a(j)


26, 5, 19, 1, 61 , 11, 59, 15 , 48, 37                       i<j  

                     i                  j                            Swap a(i), a(j)                    

26, 5, 19, 1, 15, 11 , 59 , 61, 48, 37                    (i>j)

                                                                                          Swap a(i), a(j)
                                     j        i

[11, 5, 19,  1  , 15,] 26, [59, 61, 48, 37 ]            i< j


                 Ii      j                           p      i                j                     i< j

                            Partition


[11, 5,   1    19  15]  26  [59, 37   48  61 ]        i > j

             i        j                                j     i           I > j    

[1, 5]  11   [19   15]  26  [ 48, 37]  58    [61]

      1     5      11    15  19  26    37   48   59   61
Analysis: -

In analyzing the quick sort we count the no/: of element comparisons. Quick sort requires O (n2) comparisons in the worst case and 0 (along) comparisons in the average case.

Q) Explain the general method of greedy strategy. 


GREEDY METHOD
It is used to solve problems that have ‘n’ inputs and require us to obtain a subset that satisfies some constraints. Any subset that satisfied the constraints is called as a feasible solution. We need to find the optimum feasible solution i.e. the feasible solution that optimizes the given objective functions.

The greedy method suggests that one can divide the algorithm that works in stages. Considering one input at a time. At each stage a decision is made regarding weather or particular input is in the optimum solution. For this purpose all the inputs must be arranged in a particular order by using a selection process. If the inclusion of next input in to the partially constructed solution will result in an infeasible solution then the input will not be considered and will not be added to partially constructed set otherwise it is added.

Q) Give the control abstraction of greedy class of algorithms and explain the features. 








CONTROL ABSTRACTION FOR GREEDY METHOD: -

Algorithm Greedy (a,n)

//a[1:n] contains the ‘n’ inputs

{     Solution: = 0; //initialize the solution

          for i: = 1 to n do

          {  x: = select (a);

             if feasible (solution, x) then


solution: = Union (solution, x);

          }

          return solution;

}

Select is a function which is used to select an input from the set. Feasible is a function which verifies the constraints and determines weather the resultant solution is feasible or not. Union is a function which is used to add elements to the partially constructed set.

Q) Explain the terms “feasible solution” and “Optimal solution” with the help of an example. 






Feasible Solution:- 

          Any subset of the solutions that satisfies the constraints of the problem is known as a feasible solution.

Optimal Solution:-

           The feasible solution that maximizes or minimizes the given objective function is an optimal solution. Every problem will have a unique optimal solution.

Q) Define the knapsack problem and give the greedy algorithm for it. Also prove the correctness of the heuristic employed. 



KNAPSACK PROBLEM: -

A knapsack with capacity ‘m’ is given in to which we are required to place certain weights such that the sum of the weights will not exceed the knapsack capacity. Associated with each weight we have associated profit which will be earned by the inclusion of the object in to the knapsack.

If it is not possible to include an object entirely a fraction of the object can be included and accordingly a fraction of the profit is earned.

Given ‘n’ objects and a bag of capacity ‘n’ and each object ‘i’ has a profit pi and weight wi associated with it. If a fraction xj (o≤ x, ≤ 1) of the object i is placed in the bad. A profit pi x xi is made. The objective in the problem is to obtain the maximum profit by filling the bag with given objects.

The knapsack problem can be stated mathematically as follows.

Pi xi 
Maximize ∑ Pi xi


1 ≤ i  ≤ n


S.T.C



∑ Pi xi ≤ m



1 ≤ u ≤ n



o ≤ xi ≤ 1



1 ≤ i ≤ n

Ex: - Consider 3 objects whose profits and weights are defined as

(P1, P2, P3)    =    ( 25, 24, 15 )


(W1, W2, W3) =    ( 18, 15, 10 )

                                         n=3                m=20

Consider a knapsack of capasing 20. Determine the optimum strategy for placing the objects in to the knapsack. The problem can be solved by the greedy approach where in the inputs are arranged according to selection process (greedy strategy) and solve the problem in stages. The various greedy strategies for the problem could be as follows.

(1) Greedy about profit: -


(x1, x2, x3)

∑ xiwi


∑ xipi


(1, 2/15, D)
18x1+
[image: image22.wmf]15

2

x15 
25x1+
[image: image23.wmf]15

2

x24 8




= 20


25+
[image: image24.wmf]5

16


= 28.2

(2) Greedy about weight: - 

      
                                                                 

        5


(0, 2/3, 1)


[image: image25.wmf]3

2

x15+10x1= 20
15x1+
[image: image26.wmf]3

2

x24 8 = 31

(3) Greedy about profit / unit weight: -

 
(0, 1, ½ )

1x15+
[image: image27.wmf]2

1

x10 = 20
1x24+
[image: image28.wmf]2

1

x15 = 31.5
If an additional constraint of including each and every object is placed then the greedy strategy could be

(4)  (½, ⅓, ¼ )

½ x 18+⅓ x15+ ¼ x10 = 16. 5


½ x 25+⅓ x24+ ¼ x15 = 12.5+8+3.75 = 24.25

Algorithm Greedy knapsack (m, n)
//p (1>n) and w(1:n) contain the profits and weights

//resp. of the n objects ordered such that p(i)/W(i)

//( p[i+1)/w (i+1]. M is the knapsack size and x (1:n)

// is the solution vector

{

for i: = 1 to n do x(i) = 0.0i// initialize x 

     u : = m;

     for i: = 1 to n do

     { if (w(i) > u) then break;

           x(i): = 1.0; u: = u-w(i);

      }

      if (i≤n) then x(i): = u/w(i);

}

Analysis: - If. we do not consider the time considered for sorting the inputs then all of the three greedy strategies complexity will be O(n).

Q) Explain job sequencing with deadlines problem with a suitable example.
JOB SEQUENCING WITH DEADLINES: -

Problem: - 

            We are given a set of ‘n’ jobs. Associated with each job there is a integer dead line di(0 and a profit pi>0. For any job i the profit pi is earned if and only if the job is completed by its dead line. To complete a job one has to process the job on a machine for one unit of time. Only one machine is available for processing the jobs. A feasible solution for the problem will be a subset ‘j’ of jobs such that each job in this subset can be completed by its deadline. The value of a feasible solution ‘j’ is the sine of the profits of the jobs in ‘j’. An optimum solution is a feasible solution with maximum value.
The problem involves identification of a subset of jobs which can be completed by its deadline. Therefore the problem suites the subset methodology and can be solved by the greedy method. 

Ex: - Obtain the optimal sequence for the following jobs.
                                                 j1   j2    j3   j4
(P1, P2, P3, P4)
= 
(100, 10, 15, 27)

(d1, d2, d3, d4)
=
(2, 1, 2, 1)

      n =4

	Feasible soln
	Processing sequence
	Value

	j1 j2

(1, 2)
	(2,1)
	100+10=110

	(1,3)
	(1,3) or (3,1)
	100+15=115

	(1,4)
	(4,1)
	100+27=127

	(2,3)
	(2,3)
	10+15=25

	(3,4)
	(4,3)
	15+27=42

	(1)
	(1)
	100

	(2)
	(2)
	10

	(3)
	(3)
	15

	(4)
	(4)
	27


             In the example solution ‘3’ is the optimal. In this solution only jobs 1&4 are processed and the value is 127. These jobs must be processed in the order j4 followed by j1. the process of job 4 begins at time 0 and ends at time 1. And the processing of job 1 begins at time 1 and ends at time2. Therefore both the jobs are completed within their deadlines. The optimization measure for determining the next job to be selected in to the solution is according to the profit. The next job to include is that which increases ∑pi the most, subject to the constraint that the resulting “j” is the feasible solution. Therefore the greedy strategy is to consider the jobs in decreasing order of profits.

Q) Define the problem of job sequencing with deadlines and develop a greedy heuristic algorithm for solving it. Also give a brief note on the correctness of the developed algorithm. 






Algorithm Greedy Job (d,j,n)
//j is a set of jobs that can be completed by

// their dead lines

{      j: = {1};

      for i: = 2 to n do

      { if (all jobs in j u {i} can be completed by their dead lines) then

                j: = ju{ i};

       }

}

Q) Explain the faster version of job sequencing with deadlines problem using an example. What is its timing complexity? 



Q) Write a greedy algorithm for sequencing unit time jobs with deadlines and profits. Using this algorithm, find the optimal solutions when n=5,(p1,p2,p3,p4,p5)=(20,15,10,5,1) and (d1,d2,d3,d4,d5)=(2,2,1,3,3). 

Problem:-
Find the optimum job sequence for the following problem.

n = 7             P7            J1  j2   j3     j4   j5  j6   j7
(P1, P2, P3, P4, P5, P6)
=
(3, 5, 10, 18, 1, 6, 30)

                             d7
(d1, d2, d3, d4, d5, d6)
=
(1,3, 4, 3, 2, 1, 2)

Feasible soln.

Processing Sequence
        Value

(1, 2, 3, 4)

  (1,2,4,3) or (1,4,2,3)             3+5+10+18= 36

Q) Define spanning tree and minimum cost spanning tree with the help of an example.
SPANNING TREE: -  A Sub graph ‘n’ of o graph ‘G’ is called as a spanning tree if

(i) It includes all the vertices of ‘G’

(ii) It is a tree

                   For a given graph ‘G’ there can be more than one spanning tree. If weights are assigned to the edges of ‘G’ then the spanning tree which has the minimum cost of edges is called as minimal spanning tree.

                     The greedy method suggests that a minimum cost spanning tree can be obtained by contracting the tree edge by edge. The next edge to be included in the tree is the edge that results in a minimum increase in the some of the costs of the edges included so far.

Q) Write and explain prim’s algorithm for determining the minimum cost spanning tree.Derive its time and space complexities. 



Q) Write and explain Prim’s minimum cost spanning tree algorithm. 

PRIM’S ALGORITHM: -

i) Select an edge with minimum cost and include in to the spanning tree.

ii) Among all the edges which are adjacent with the selected edge, select the one with minimum cost.

iii) Repeat step 2 until ‘n’ vertices and (n-1) edges are been included. And the sub graph obtained does not contain any cycles.

Notes: - At every state a decision is made about an edge of mi9nimum cost to be included into the spanning tree. From the edges which are adjacent to the last edge included in the spanning tree i.e. at every stage the sub-graph obtained is a tree.
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Algorithm Prim (E, cost, n,t)

// E is the set of edges in G. Cost (1:n, 1:n) is the

// Cost adjacency matrix of an n vertex graph such that

// Cost (i,j) is either a positive real no. or q if no edge

// (i,j) exists. A minimum spanning tree is computed and 

// Stored in the array + (1:n-1), 1:2). (t (i, 1), + (i,2)

// is an edge in the minimum cost spanning tree

// The final cost is returned


{


Let (k, l) be an edge with min cost in E


Min cost: = Cost (x,l);


T(1,1):= k; + (1,2):= l;

for i:= 1 to n do//initialize near


if (cost (i,l)<cost (i,k) then n east (i):  l;


else near (i): = k;


near (k): = near (l): = 0;


for i: = 2 to n-1 do

{//find n-2 additional edges for t

let j be an index such that near (i) (0 & cost (j, near (i)) is minimum;

t (i,1): = j + (i,2): = near (j);

min cost: = Min cost + cost (j, near (j));

near (j): = 0;

for k:=1 to n do // update near ()

if ((near (k) (0) and (cost {k, near (k)) > cost (k,j)))

then near Z(k): = ji

}

return mincost;

}

The algorithm takes four arguments E: set of edges, cost is nxn adjacency matrix cost of (i,j)= +ve integer, if an edge exists between i&j otherwise infinity. ‘n’ is no/: of vertices. ‘t’ is a (n-1):2matrix which consists of the edges of spanning tree.

E = { (1,2), (1,6), (2,3), (3,4), (4,5), (4,7), (5,6), (5,7), (2,7) }

n = {1,2,3,4,5,6,7)
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i) The algorithm will start with a tree that includes only minimum cost edge of G. Then edges are added to this tree one by one.

ii) The next edge (i,j) to be added is such that i is a vertex which is already included in the treed and j is a vertex not yet included in the tree and cost of i,j is minimum among all edges adjacent to ‘i’.

iii) With each vertex ‘j’ next yet included in the tree, we assign a value near ‘j’. The value near ‘j’ represents a vertex in the tree such that cost (j, near (j)) is minimum among all choices for near (j)

iv) We define near (j):= 0 for all the vertices ‘j’ that are already in the tree.

v) The next edge to include is defined by the vertex ‘j’ such that (near (j)) ( 0 and cost of (j, near (j)) is minimum.

Analysis: -

The time required by the prince algorithm is directly proportional to the no/: of vertices. If a graph ‘G’ has ‘n’ vertices then the time required by prim’s algorithm is 0(n2)

Q) Write and explain the Kruskal’s algorithm.                        
KRUSKAL’S ALGORITHM: -

In Kruskals algorithm for determining the spanning tree we arrange the edges in the increasing order of cost.

i) All the edges are considered one by one in that order and deleted from the graph and are included in to the spanning tree.

ii) At every stage an edge is included; the sub-graph at a stage need not be a tree. Infact it is a forest.

iii) At the end if we include ‘n’ vertices and n-1 edges without forming cycles then we get a single connected component without any cycles i.e. a tree with minimum cost.

At every stage, as we include an edge in to the spanning tree, we get disconnected trees represented by various sets. While including an edge in to the spanning tree we need to check it does not form cycle. Inclusion of an edge (i,j) will form a cycle if i,j both are in same set. Otherwise the edge can be included into the spanning tree.

Ex: - Let the partition be {1,2} {3,4,6} {5}


I we want to include the edge (1,4) it can be included as land 4 are in different sets.


So we get (1,2,3,4,6) (5) subsets respectively. If we want to include the edge between (2,6) because 2&6 are in the same subsets and its i9nclusion will lead to a cycle.
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//Algorithm Kruskal (E, cost, n,t)

//E is the set of edges in G. ‘G’ has ‘n’ vertices

//Cost {u,v} is the cost of edge (u,v) t is the set

//of edges in the minimum cost spanning tree

//The final cost is returned

{ construct a heap out of the edge costs using heapify;

            for i:= 1 to n do parent (i):= -1 // place in different sets

//each vertex is in different set                 {1} {1} {3}

            i: = 0; min cost: = 0.0;

            While (i<n-1) and (heap not empty))do

{

Delete a minimum cost edge (u,v) from the heaps; and reheapify using adjust;

j:= find (u); k:=find (v); 

if (j(k) then

{  i: = 1+1;

    + (i,1)=u; + (i, 2)=v;

     mincost: = mincost+cost(u,v);

     Union (j,k);

     }

}

if (i(n-1) then write (“No spanning tree”);

    else return mincost;

}

Analysis: - If the no/: of edges in the graph is given by /E/ then the time for Kruskals algorithm is given by 0 (|E| log |E|).

Q) Show the step by step procedure of deriving the minimum cost spanning tree using prim’s and kruskal’s algorithm on the below graph.
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Q) Explain the optimal storage on tapes problem by means of an example.

Optimum Storage on Tapes: -

There are ‘n’ programs that are to be stored on a computer tape of length ‘l’. Associated with each program I there is a length li, 1≤ i ≤ n. It is clear that all the programs can be stored on to the tape it and only if the sum of the lengths of all the programs is ≤ l. We assume that when ever a program is to be retried from the tape, the tape is positioned at the beginning. In the optimum storage on tapes problem we are required to find a permutation for ‘n’ programs so that when they are stored on the tape in that order the mean retrieval time will be minimum.

Example: - Let n=3; (l1, l2, l3) = (8,5,3)

There are n1 i.e. 3!=6 orderings. These orderings and their respective‘d’ values are as follows.

         Orderings


         ( (I)
1
2

3

8+(8+5)+(8+5+3)= 37

1
3

2

8+(8+3)+(8+3+5)= 35

3
2

1

3+(3+5)+(3+5+8)= 27

2
3

1

5+(5+3)+5+3+8  = 29

3
1

2

3+(3+8)+(3+8+5)= 30

2
1

3

5+5+8+5+8+3 =    34

The optimal ordering is 3  2  1.

The greedy strategy studies that programs are to be arranged in the increasing order of lengths to achieve the optimal solution.

The tape problem can be extended to several tapes. If there are ‘m’ tapes then the n programs are to be distributed over these tapes. For each tape a storage permutation is to be provided. The object5ive again here is to store the programs in such a way that the total requirement, time is minimum.

Q) Write the algorithm for generating 2-way merge tree and illustrate it with suitable example. Also analyze the algorithm.
Optimal Merge Patterns: -

When more than two socket files are to be merged together the merge can be accomplished by repeated merging sorted files in pairs. If we are given four files x1, x2, x3, x4 which are to be merged, then we could merge in the following ways.

i) Merge x1, x2 to get y1, y is merged with x3 to get y2 and finally y2 is merged with x4 to get y3.

x1, x2, x3, x4

                                                               y1 ,  x3

                                                                    y1 ,  x3
    

                                                                        y3
Ex: -                        5, 10, 15, 20


                                   15,  15


30 20


                                             50

Total No/: of recor4d moves   15+30+50 = 95

ii) x1, x2 are merged to get y1, x3, x4 are merged to get y2 and y & y2 are merged to get y3.

                                                           x1, x2, x3, x4

                                                               y1 ,  y2

                                                                   y3  

  Ex: - 
5, 10, 15, 20

                                                                        

                  15      35

                       50

Total record moves = 15+35+50 = 100

Given ‘m’ socket files there are many ways in which we can merge then in to a single socket file. Different orders require different amounts of computing time. We have to determine. The optimum sequence for pair wise merging of sorted files which minimizes the no/: of comparisons. A greedy attempt is to merge two smallest size files at each stage.

Let us consider 5 files with sizes 

x1, x2,  x3,  x4,  x5
20 30 10  5  30

We first merge x3 and x4 to get z1, z1 is merged with next smallest size 5 i.e. x1 to get z2. z2 & z5 are then combined to get z3  and finally z2 is combined with z3 to get z4.

x1, x2,  x3,  x4,  x5
20 30 10  5  30


20         z1
                                                                             z4
      z2      z3

                                                                                          z2                                                       z3

          z4

                                              

  z1                           
                                             x1                x2               x5         

 x3                   x4
ALGORITHM TO GENERATE A 2 WAY MERGE TREE: -
treenode = record

{

treenode ‘*lchild; treenode *rchild;

integer weight; //Datafield

}


Algorithm tree(n)

//list is a global list of n single node

//binary trees as described above for i = 1 to n-1 do


{ pt: = new treenode; //Get arrow node


(pt( lchild):= least(list); //merge two trees


(pt( rchild): = least (list)://smallest lengths


(pt(weight): = ((pt(lchild) ( weight) + ((pt(rchild)( weight);


insert (list, pt);


}


return least (list); //tree left in the list is merge tree;

}

Ex: -

                              lchild  pt weight rchild

	2000
	15
	300


                                          1000

	 
	5
	 


	
	10
	 



                  2000                                       3000

· Simulate the algorithm tree for the following

                        2,3,5,7,9,13

          Iteration                                               List


           Initial                                                3   5   7   9   13


              1                                                      

             

              2                                

                3                                                               

              4.        

             5.             
Q) Find an optimal binary merge pattern for ten files whose lengths are 


28,32,12,5,84,53,91,35,3 and 11. 
Q) Write an algorithm to find the shortest path from a single source in a graph. Discuss its time complexity. 
Q) Write and explain single source shortest path problem. 

Q) Develop the greedy algorithm for generating shortest paths from a single source in a given directed graph. 
SINGLE SOURCE SHORTEST PATH: -

                                                                       250          
                                                                               1500

                                                           1200

             3250                         2400            

                               300                                                 1000             250

                                                                                                              250

           300             1000                                                    1400

                                                                                                           900

                                        1700                                            1000

              3350                                                           1450               1150



1
2
3
4
5
6
7
8



1
0
0
0
0
0
0
0
0


2       300
0
0
0
0
0
0
0


3      1000    800
0
0
0
0
0
0


4
0
0      1200
0
0
0
0
0


5
0
0
0     1500
0      250
0
0


6
0
0
0     1000
0
0       900   1400


7
0
0
0
0
0
0
0      1000


8      1700
0
0
0
0
0
0
0

                                        Length adjacency matrix

Shortest path from vertex file to remaining vertices

	Internation
	S
	Vertex Selects
	1
	2
	3
	4
	5
	6
	7
	8

	Initial
	-
	-
	(
	(
	(
	1500
	0
	200
	(
	(

	1
	{5}
	6
	(
	(
	(
	1250
	0
	250
	1150
	1650

	2
	{5,6}
	7
	(
	(
	(
	1250
	0
	250
	1150
	1650

	3
	{5,6,7}
	4
	(
	(
	2450
	1250
	0
	250
	1150
	1650

	4
	{5,6,7,4}
	8
	3350
	(
	2450
	1250
	0
	250
	1150
	1650

	5
	{5,6,7,4,8}
	3
	3350
	3250
	2450
	1250
	0
	250
	1150
	1650

	6
	{5,6,7,4,8,3}
	2
	3350
	3250
	2450
	1250
	0
	250
	1150
	1650

	7
	{5,6,7,4,8,3,2}
	1
	0
	0
	0
	0
	0
	0
	0
	0


We have to find a shortest path from a selected source to all of the remaining destinations in a directed graph.

One possibility is to built shortest paths one by one. As an optimization measure we can use the sum of the lengths of all paths generated so far. For this measure to be minimized each individual path must be of minimum length. If we have already constructed ‘i’ shortest paths, then using this optimization measure, the next path to be constructed should be the next shortest minimum length path.

The greedy way to generate the shortest paths from a specific vertex to the remaining vertices is to generate these paths in non-decreasing order of path lengths. First a shortest path to the next vertex is generated. This shortest path to the second next nearest vertex is generated and so on.

Algorithm shortest paths (v, cost, dist, n)

//dist (j), 1≤ j ≤ n, is set to the length of shortest path

//from vertex v to vertex j in a diagraph G with n vertices

//dist(v) is set to zero. G is represented by its cost

//adjacency matrix cost (1:n, 1:n)

{ for i = 1 to n do

{ // initializes


s(i) = false;


dist(i) = cost (v,i);


}


s(v)= tree; dist (v) = 0.0; // put vins


for num: = 2 to n-1 do


{  determine n-1 paths from v choose u from among those vertices not in s. 

             Such that dist (u) is min.


   S(u):= true; //put u ins


   For (each u adjancent to u with s(w)= false)do


   // update distances

if (dist (w) > dist (u) + cost (u,w)) then

dist (w): = dist (u) + Cost (u,w);

}

                                            10                                     
                                 

                                15                 30                                         
                
2


                   10
                            4   

                                4     
                                                                              15

10
Exercises:- 

1. Solve the recurrence relation (3,2) for the following choices of a, b, and f(n) (c being a a constant):                                                                                            (a) a=1, b=2 and f(n)=cn                                                                               (b) a=5, b=4 and f(n)=cn2                                                                                (c) a=28, b=3 and f(n)=cn3
Questions:-
1. Theorem for knapsack problem (given in notes) April/may-00,Q4(b)
*****   All the Best *****
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