
Unit – V
Basic concepts, Cook’s Theorem, NP-Hard graph Problems and Scheduling problems, NP-Hard code generation problems, Decision Problem, Node covering problem.

Q) What are deterministic and non deterministic algorithms? May/jun-07
Q) Obtain a nondeterministic algorithm of complexity O(n) to determine whether or not there is a subset of the n number ai, 1 (i (n that sums to M. Frb-05,Q9

Q) Differentiate between Tractable and Intractable Problem.Aug-04,Q9(a)

Q) Differentiate between Deterministic algorithm and nondeterministic algorithms. Sep-03,Q9(a),Apr-98,Q10(c)

Q) Describe about nondeterministic algorithms. Jun-03,Q9(a)

Q) Distinguish between a deterministic and nondeterministic algorithms. Sep/oct-98,Q9(a)
Ans:-

Deterministic step:-

A step which is defining the result of an operation uniquely is called a deterministic step. Ex:- i
[image: image1] 10

Deterministic algorithm:-

An algorithm that consists of only deterministic steps is called deterministic Algorithm.

Non Deterministic Step:-

A step whose outcome is not uniquely defined is called a nondeterministic step. Ex:- i
[image: image2] Choice(1:10)

Non Deterministic Algorithm:-

An algorithm that consists of choice, success, Failure is called a Nondeterministic algorithm.

To specify nondeterministic algorithms three functions are introduced.

1. Choice(S) :- Arbitrarily chooses one of the elements of set S.

2. Failure () :- Signals an unsuccessful completion.

3. Success () :- signals a successful completion.
· The assignment statement x:=choice(1,n) could result in x being assigned any one of the integers in the range[1.n].

· The Failure() and success() signals are used to define a computation of the algorithm.

· Whenever there is a set of choices that leads to a successful completion, then one such set of choices is always made and the algorithm terminates successfully.

· A nondeterministic algorithm terminates unsuccessfully if and only if there exists no set of choices leading to a success signal.

· The computing times for choice success and failure are taken to be O(1).
· A machine capable of executing a nondeterministic algorithm is called a nondeterministic machine.

Nondeterministic Algorithm to determine whether or not there is a subset of the n number ai, 1 (i (n that sums to M.
Algorithm DKP (p, w, n, m, r, x)

{

 w:=0;p:=0;
 for i:=1 to n do

 {

 x[i]:=choice(0,1);

 w:=w + x[i]*w[i];

 p:=p + x[i]*p[i];

 }

 if((w>m) or (p<r)) then Failure();

 else Success();

}

Non Deterministic Search:-
Problem:- Search for an element x in a given set of elements A[1:n],n≥1. Determine an index j such that A[j]=x or j=0 if x is not in A.
Algorithm Search (A, x)

{

 j:=choice(1,n);

 if (A[j]=x) then

 {

 Write (j);

 Success ();

 }

 Write (0);

 Failure ();

}

Q) What is Satisfiability Problem? What is its significance? Sep 03

Q) What is Satisfiability Problem? Explain. Dec-05

Q) What is Satisfiability problem? Write a nondeterministic algorithm for the same. Give its time complexity. March-01

Ans:-

Satisfiability Problem:-

The Satisfiability is a Boolean formula that can be constructed using the following literals and operations.

1. A literal is either a variable or its negation (┐or ~) of the variable.

2. The literals are connected with operators ^,ν → (.

3. Parenthesis ().

The Satisfiability problem is to determine whether a boolean formula is true for some assignment of truth values to the variables. In general the formulas are expressed in CNF (Conjunctive Normal Form).

A Boolean formula is in CNF iff it is represented by
[image: image3.wmf]1

=

Ù

i

C

k

i

where Ci is the ith clause represented with literal l i j as νl i j

Ex:-
C1= l 11 ν l 12 ν ~l 13

A Boolean formula is in 3CNF if each clause has exactly 3 distinct literals.
Ex:- The formula (x1 v x2 v ~x3) ^(~x1 v x2 v ~x3) is in 3CNF since each clause has 3 literals.
The non deterministic algorithm that terminates successfully iff a given formula E(x1,x2,….x3) is satisfiable.
A nondeterministic algorithm that decides whether a propositional formula E is satisfiable or not is given below.

Algorithm Evaluate (E, n)

 {

 for i:=1 to n
 {

 xi := choice(false, true);

 }

 if (E(x1,x2,….xn) then success();

 Else failure();

}

Q) Explain the terms NP-Hard and NP-Complete Problems. Nov-06,Jul-05

Q) Distinguish between NP-Hard and NP-Complete Problems with examples. Jun-06, July-02, Apr-99

Q) Briefly explain the NP-Hard and NP-Complete Problems. Feb-05

Q) What is an NP-Hard Problem? What is an NP-Complete Problem. Give one example for each. Sep-00

Q) What do you understand by the terms ‘NP-Complete’ and ‘NP-Hard’ .

Q) Define NP-Hard and NP-Complete Problem and give one example for each. Oct-99.

Q) Explain the terms “nondeterministic”, “NP-Hard”, “NP-Complete”. May -00

Q) Distinguish among P, NP, and NP-Hard, NP-Complete classes of algorithms. Also give a brief note on the Satisfiability problem. Nov-07

Q) Write a brief note on P, NP, and NP-Hard, NP-Complete classes of Problem. Oct-98

Q) Explain the features of P, NP, NP-Hard , NP-Complete classes of problems. Apr-98

Let P denote the set of all decision problems solvable by deterministic algorithms in polynomial time. NP denotes set of decision problems solvable by non deterministic algorithms in polynomial time. Since deterministic algorithm are a special case of non deterministic algorithms, P (NP.
The non-deterministic polynomial time problems can be classified into two classes. They are NP-Hard and NP-Complete.
NP-HARD: - A problem L is NP-Hard if Satisfiability reduces to L (Satisfiability (K) i.e. any non-deterministic polynomial time problem is satisfiable and reducible then the problem is said to be NP-hard.

Example: - Halting problem, flow-shop scheduling problem.

NP-COMPLETE: - A problem L is NP-complete iff L is NP-Hard and L (NP (non-deterministic polynomial).

A problem that is NP complete has the property that it can be solved in polynomial time iff all other NP-Compete problems can also be solved in polynomial time.

If an NP-hard problem can be solved in polynomial time, then all NP-complete problems can be solved in polynomial time. All NP-complete problems are NP hard, but some NP-hard problems are not known to be NP-completed. Normally the decision problems are NP-complete but optimization problems are NP-Hard. However if problem L1 is a decision problem and L2 is an optimization problem then it is possible that L1 (L2. For example the knapsack decision problem can be reduced knapsack optimization problem. There are some NP hard problems that are not NP complete.

Relationships between P, NP, PNP – Hard and NP-Complete: -
Let P, NP, NPH and NPC are the sets of all possible decision problems that are solvable in polynomial time by using deterministic algorithms, non deterministic algorithms, NP-Hard and NP-Complete respectively. Then the relationship between P, NP, NPH and NPC can be expressed using Venn diagrams are presented below.

1) Most theoretical computer scientists view the relationships among P, NP, NPC as both P and NPC are wholly contained within NP and P (NPC = (, NPC = NP (NPH.

2) When NP = NPH and P= NP (NPH then the relationship between P, NP, NPC and NPH is

[image: image4.png]

Q) Briefly explain how to prove a problem is a NP-Hard of NP-Complete. Sep-03
Ans:-

In order to prove that a particular problem L2 is NP-Hard follow the below steps.

1. Pick a problem L1 already known to be NP-Hard.

2. Show how to obtain (in polynomial deterministic time) an instance ‘I’ of L2 from any instances ‘I’ of L1 such that from the solution of ‘I’ we can determine (in polynomial deterministic time) the solution to instance ‘I’ of L1 .
3. Conclude from (2.) that L1 (L2.
4. Conclude from (1.) ,(3.) and the transitivity of a that L2 is NP-Hard.

Q) What is problem reduction? Illustrate with an example. Sep/oct-98

Q) Write notes on reducability and polynomial equivalence. Aug-04
Q) What are Satisfiability and reducability? Define NP-Hard and NP-Complete problems using these concepts. May/Jun-07

Q) Define NP-Hard, NP-Complete, reducability, polynomial equivalent. Dec-05

Q) What is halting problem? What is its significance? Apr-00

Q) Briefly explain the halting problem. Sep/oct-98

Answer refers above: -
Q) State and explain Cook’s Theorem. Nov-06, Jul-05, Feb-04, Jul-02

Q) Explain the Cook’s theorem. Jun-06

Q) State and discuss the consequences of Cook’s Theorem. Dec-05

Q) State Cook’s Theorem. Sep-00, Apr-99, Apr-98

Q) State Cook’s theorem. What is its Significance? Oct-99

Q) What is Cook’s Theorem? Sep/Oct-98

COOK’S THEOREM: - Satisfiability is in P is and only if P = NP
Proof: -

Case-1: - Let P = NP then to show that Satisfiability is in P.

We know that a problem L will be NP-Hard if Satisfiability reduces to L.

(Satisfiability is in NP

(Satisfiability is in P (
[image: image5.wmf]Q

P = NP)

Case – 2: - Let Satisfiability is in P then to show that P = NP
· To prove this we show how to obtain from any polynomial time non-deterministic decision algorithm A and input I a formula Q (A,I) such that Q is satisfiable iff A has a successful termination with input I.

· If the length of I is n and the time complexity of A is P (n) for some polynomial P (), then the length of Q is o (P3(n)logn) = 0 (P4(n)) begins with the supplier and ends when the material is either consumed (or) incorporated into some product.
· The time needed to construct Q is also O(P3(n)logn).

· A deterministic algorithm z to determine the outcome of a on any input i can be easily obtained.

· Algorithm Z simply computes Q and then uses a deterministic algorithm for the Satisfiability problem to determine whether Q is satisfiable.

· If O (q(m) is the time needed to determine whether a formula of length m is satisfiable, then the complexity of Z is
O = (P3(n) legn + q(P3(n)logn))
· If Satisfiability is in P, then q(m) is a polynomial function of m and the complexity of Z becomes O(r(n)) for some polynomial r ().
· Hence is Satisfiability is in P, then for every nondeterministic algorithm A in NP we can obtain a deterministic Z in P.

· So the above construction shows that if Satisfiability is in P then P = NP.

Assumption for constructing the boolean formula Q for a given non-deterministic algorithm

1) A is to be executed in word oriented.

2) A simplex expression is an expression that contains one operator and all operands are simple variables.

i) Simple variable (simple expression

ii) (array variable)((simple variable)

iii) (Simple variable) ((array variable)

iv) (Simple variable) ((choice of S)

3) All variables in A are of type integer or boolean

4) Algorithm A contains no read or write statements

5) Algorithm A contains no constants

6) In addition to simple assignment statements A is allowed to contain only the following type of statements.

i) Statement go to k

ii) Statement if (L) then go to b

iii) Success (), failure ()

iv) Algorithm A contain type declaration and dimension statements

v) Let P(n) be a polynomial time such that A takes no more than P(n) time on the input of length n.

Q) Discuss in detail about the clique decision problem?
Let G be a non-directed graph consisting of a set of vertices V and set of edges E. A maximal complete sub graph of a graph G is a clique. The size of the clique is the number of vertices in it. The max clique problem is an optimization problem that has to determine whether graph has a clique of size at least k for some integer k.

Example condier the graph.

A non determini9stic algorithm for the clique decision problem is given below.

Algorithm NDClique (G,n,k)

//G is graph with n vertices

// k is size of clique

{

S((

for I (1 to k do

{

T (choice (1,n);

If (T(S) then failure ();

S (S ({T}

for (all pairs (i,j) such that i (S, j (S and i (j) do

if ((i, j) is not an edge of G) then failure ();

else success ();

}

Q) What is node cover problem? Show that clique decision problem reduces to node cover decision problem? (May’ 2007)
Let G = (V,E) be a non directed graph. A set S which is a subset of V is a node cover if all edges in E are incident to atleast one vertex in S. The size of node cover is the number of vertices in it. The node cover decision problem is to find minimum size vertex cover in the given graph.

Example: Consider the graph.

Since S = {b,d} touches all the edges of G,S is a node cover of size 2.

Clique decision problem (to node cover decision Problem: -

Let G be a non directed graph consisting of set of vertices V and set of edges E. Let (V(= n. Let
[image: image6.wmf]G

be complement of a graph G such the
[image: image7.wmf]G

 has mode cover of size atmost n-k iff G has a clique of size at least k. The graph
[image: image8.wmf]G

 is given by
[image: image9.wmf]G

 = (V,
[image: image10.wmf]E

) where
[image: image11.wmf]E

 = {u,v} u (V, v (V and (u,v) (E}
We have to show than G has a clique of size atleast k iff
[image: image12.wmf]G

 has a node cover of size atmost n-k.

Let C be any clique of G since there are no edges in
[image: image13.wmf]E

 connecting vertices in C, the remaining n-(C(vertices in
[image: image14.wmf]G

, must cover all edges in
[image: image15.wmf]E

. Similarly if S is a node cover of
[image: image16.wmf]G

, then V-S must form a complete sub graph in G. Since
[image: image17.wmf]G

 can be obtained from G in polynomial time, clique decision problem can be solved in polynomial deterministic time of we have a polynomial time deterministic algorithm for node cover Decision Problem.

QUESTIONS: -

1) What is sum of subsets problem? Obtain a deterministic algorithm of complexity O (n) to determine whether there is a subset of n numbers ap 1≤ i ≤ n that sums to M.

2) Explain

i) Chromatic Number Decision Problem

ii) Directed Hamiltonian Cycle

3) Explain how to prove a problem is NP-Hard or NP complete.

4) Write a note on scheduling identical processors?

5) Show that partition reduces to minimum finish time non preemptive schedule?

6) Write a note on Flow stop scheduling problem?

7) Write a note on job shop scheduling?

8) Show that partition reduces to the minimum finish time preemptive flow shop schedule.

9) Explain code generation with common sub expressions?

REFEREBCE BOOKS: -
1) Fundamentals of Computer Algorithms by Horowitz, Shani.

All the Best[image: image18.png]

_1303030051.unknown

_1303030133.unknown

_1303030153.unknown

_1302606431.unknown

_1303030029.unknown

_1302508593.unknown

