
 STM STEP

1) State and explain various dichotomies in S/W testing.(CO1)

Testing Versus Debugging: Purpose of testing is to show that a program has bugs.
The purpose of testing is to find the error or misconception that led to the program's
failure and to design and implement the program changes that correct the error.

Debugging usually follows testing, but they differ as to goals, methods and most
important psychology. The below tab le shows few important differences between
testing and debugging.

Testing Debugging

Testing starts with known conditions,
uses predefined procedures and has
predictable outcomes.

Debugging starts from possibly unknown
intial conditions and the end can not be
predicted except statistically.

Testing can and should be planned,
designed and scheduled.

Procedure and duration of debugging
cannot be so constrained.

Testing is a demonstration of error or
apparent correctness. Debugging is a deductive process.

Testing proves a programmer's
failure.

Debugging is the programmer's
vindication (Justification).

Testing, as executes, should strive to
be predictable, dull, constrained,
rigid and inhuman.

Debugging demands intutive leaps,
experimentation and freedom.

Much testing can be done without
design knowledge.

Debugging is impossible without detailed
design knowledge.

Testing can often be done by an
outsider.

Debugging must be done by an insider.

Much of test execution and design
can be automated.

Automated debugging is still a dream.

Function Versus Structure: Tests can be designed from a functional or a structural
point of view. In functional testing, the program or system is treated as a blackbox. It is
subjected to inputs, and its outputs are verified for conformance to specified behaviour.
Functional testing takes the user point of view- bother about functionality and features
and not the program's implementation.Structural testing does look at the
implementation details. Things such as programming style, control method, source
language, database design, and coding details dominate structural testing.

Both Structural and functional tests are useful, both have limitations, and both target
different kinds of bugs. Functional tets can detect all bugs but would take infinite time

to do so. Structural tests are inherently finite but cannot detect all errors even if
completely executed.

 Designer Versus Tester: Test designer is the person who designs the tests where as
the tester is the one actually tests the code. During functional testing, the designer and
tester are probably different persons. During unit testing, the tester and the programmer
merge into one person.

Tests designed and executed by the software designers are by nature biased
towards structural consideration and therefore suffer the limitations of structural
testing.

Modularity Versus Efficiency: A module is a discrete, well-defined, small
component of a system. Smaller the modules, difficult to integrate; larger the
modules, difficult to understand. Both tests and systems can be modular. Testing can
and should likewise be organised into modular components. Small, independent test
cases can be designed to test independent modules.

Small Versus Large: Programming in large means constructing programs that
consists of many components written by many different programmers. Programming
in the small is what we do for ourselves in the privacy of our own offices. Qualitative
and Quantitative changes occur with size and so must testing methods and quality
criteria.

Builder Versus Buyer: Most software is written and used by the same organization.
Unfortunately, this situation is dishonest because it clouds accountability. If there is
no separation between builder and buyer, there can be no accountability.

The different roles / users in a system include:

1. Builder: Who designs the system and is accountable to the buyer.
2. Buyer: Who pays for the system in the hope of profits from providing

services.
3. User: Ultimate beneficiary or victim of the system. The user's interests are

also guarded by.
4. Tester: Who is dedicated to the builder's destruction.
5. Operator: Who has to live with the builders' mistakes, the buyers' murky

(unclear) specifications, testers' oversights and the users' complaints.

2) Discuss path testing criteria?(CO5)

 PATH TESTING - PATHS, NODES AND LINKS:
1 Path:a path through a program is a sequence of instructions or statements that
starts at an entry, junction, or decision and ends at another, or possibly the same
junction, decision, or exit.
2 A path may go through several junctions, processes, or decisions, one or more
times.
3 Paths consists of segments.
4 The segment is a link - a single process that lies between two nodes.
5 A path segment is succession of consecutive links that belongs to some path.
6 The length of path measured by the number of links in it and not by the number of
the instructions or statements executed along that path.
7 The name of a path is the name of the nodes along the path.
 FUNDAMENTAL PATH SELECTION CRITERIA:
1 There are many paths between the entry and exit of a typical routine.
2 Every decision doubles the number of potential paths. And every loop multiplies
the number of potential paths by the number of different iteration values possible for the
loop.
3 Defining complete testing:

1. Exercise every path from entry to exit
2. Exercise every statement or instruction at least once
3. Exercise every branch and case statement, in each direction at

least once
4 If prescription 1 is followed then 2 and 3 are automatically followed. But it is
impractical for most routines. It can be done for the routines that have no loops, in which
it is equivalent to 2 and 3 prescriptions.
5
6 EXAMPLE:Here is the correct version.

For X negative, the output is X + A, while for X greater than or equal to
zero, the output is X + 2A. Following prescription 2 and executing every
statement, but not every branch, would not reveal the bug in the following
incorrect version:

A negative value produces the correct answer. Every statement can be
executed, but if the test cases do not force each branch to be taken, the
bug can remain hidden. The next example uses a test based on executing
each branch but does not force the execution of all statements:

The hidden loop around label 100 is not revealed by tests based on
prescription 3 alone because no test forces the execution of statement
100 and the following GOTO statement. Furthermore, label 100 is not
flagged by the compiler as an unreferenced label and the subsequent
GOTO does not refer to an undefined label.

7 A Static Analysis (that is, an analysis based on examining the source code or
structure) cannot determine whether a piece of code is or is not reachable. There could
be subroutine calls with parameters that are subroutine labels, or in the above example
there could be a GOTO that targeted label 100 but could never achieve a value that
would send the program to that label.
8 Only a Dynamic Analysis (that is, an analysis based on the code's behavior
while running - which is to say, to all intents and purposes, testing) can determine
whether code is reachable or not and therefore distinguish between the ideal structure
we think we have and the actual, buggy structure.
 PATH TESTING CRITERIA:
1 Any testing strategy based on paths must at least both exercise every instruction
and take branches in all directions.
2 A set of tests that does this is not complete in an absolute sense, but it is
complete in the sense that anything less must leave something untested.

3 So we have explored three different testing criteria or strategies out of a
potentially infinite family of strategies.

1. Path Testing (Pinf):

 Execute all possible control flow paths through the
program: typically, this is restricted to all possible
entry/exit paths through the program.

 If we achieve this prescription, we are said to have
achieved 100% path coverage. This is the strongest
criterion in the path testing strategy family: it is
generally impossible to achieve.

2. Statement Testing (P1):
 Execute all statements in the program at least once

under some test. If we do enough tests to achieve
this, we are said to have achieved 100% statement
coverage.

 An alternate equivalent characterization is to say
that we have achieved 100% node coverage. We
denote this by C1.

 This is the weakest criterion in the family: testing
less than this for new software is unconscionable
(unprincipled or can not be accepted) and should be
criminalized.

3. Branch Testing (P2):
 Execute enough tests to assure that every branch

alternative has been exercised at least once under
some test.

 If we do enough tests to achieve this prescription,
then we have achieved 100% branch coverage.

 An alternative characterization is to say that we
have achieved 100% link coverage.

 For structured software, branch testing and
therefore branch coverage strictly includes
statement coverage.

 We denote branch coverage by C2.
2 Commonsense and Strategies:

 Branch and statement coverage are accepted today as the
minimum mandatory testing requirement.

 The question "why not use a judicious sampling of paths?,
what is wrong with leaving some code, untested?" is ineffectual
in the view of common sense and experience since: (1.) Not
testing a piece of a code leaves a residue of bugs in the
program in proportion to the size of the untested code and the
probability of bugs. (2.) The high probability paths are always
thoroughly tested if only to demonstrate that the system works
properly.

 Which paths to be tested? You must pick enough paths to
achieve C1+C2. The question of what is the fewest number of
such paths is interesting to the designer of test tools that help

automate the path testing, but it is not crucial to the pragmatic
(practical) design of tests. It is better to make many simple
paths than a few complicated paths.

 Path Selection Example:

Figure 2.9: An example flowgraph to
explain path selection

 Practical Suggestions in Path Testing:

11 Draw the control flow graph on a single sheet of
paper.

11 Make several copies - as many as you will need for
coverage (C1+C2) and several more.

11 Use a yellow highlighting marker to trace paths.
Copy the paths onto a master sheets.

11 Continue tracing paths until all lines on the master
sheet are covered, indicating that you appear to
have achieved C1+C2.

11 As you trace the paths, create a table that shows
the paths, the coverage status of each process, and
each decision.

11 The above paths lead to the following table
considering Figure 2.9:

11 After you have traced a a covering path set on the
master sheet and filled in the table for every path,
check the following:

1. Does every decision have a YES and a
NO in its column? (C2)

2. Has every case of all case statements
been marked? (C2)

3. Is every three - way branch (less, equal,
greater) covered? (C2)

4. Is every link (process) covered at least
once? (C1)

11 Revised Path Selection Rules:

 Pick the simplest, functionally sensible
entry/exit path.

 Pick additional paths as small variation
from previous paths. Pick paths that do
not have loops rather than paths that do.
Favor short paths that make sense over
paths that don't.

 Pick additional paths that have no
obvious functional meaning only if it's
necessary to provide coverage.

 Be comfortable with your chosen paths.
Play your hunches (guesses) and give
your intuition free reign as long as you
achieve C1+C2.

 Don't follow rules slavishly (blindly) -
except for coverage.

3) Discuss in detail data flow testing strategies?(CO4)
o Data Flow Testing Strategies are structural strategies.
o In contrast to the path-testing strategies, data-flow strategies take into

account what happens to data objects on the links in addition to the raw
connectivity of the graph.

o In other words, data flow strategies require data-flow link weights
(d,k,u,c,p).

o Data Flow Testing Strategies are based on selecting test path segments
(also called sub paths) that satisfy some characteristic of data flows for
all data objects.

o For example, all subpaths that contain a d (or u, k, du, dk).
o A strategy X is stronger than another strategy Y if all test cases produced

under Y are included in those produced under X - conversely forweaker.
 TERMINOLOGY:

1. Definition-Clear Path Segment, with respect to variable X, is a
connected sequence of links such that X is (possibly) defined on the first
link and not redefined or killed on any subsequent link of that path
segment. ll paths in Figure 3.9 are definition clear because variables X
and Y are defined only on the first link (1,3) and not thereafter. In Figure
3.10, we have a more complicated situation. The following path segments
are definition-clear: (1,3,4), (1,3,5), (5,6,7,4), (7,8,9,6,7), (7,8,9,10),
(7,8,10), (7,8,10,11). Subpath (1,3,4,5) is not definition-clear because the
variable is defined on (1,3) and again on (4,5). For practice, try finding all
the definition-clear subpaths for this routine (i.e., for all variables).

2. Loop-Free Path Segment is a path segment for which every node in it is
visited atmost once. For Example, path (4,5,6,7,8,10) in Figure 3.10 is
loop free, but path (10,11,4,5,6,7,8,10,11,12) is not because nodes 10 and
11 are each visited twice.

3. Simple path segment is a path segment in which at most one node is
visited twice. For example, in Figure 3.10, (7,4,5,6,7) is a simple path
segment. A simple path segment is either loop-free or if there is a loop,
only one node is involved.

4. A du path from node i to k is a path segment such that if the last link has
a computational use of X, then the path is simple and definition-clear; if
the penultimate (last but one) node is j - that is, the path is (i,p,q,...,r,s,t,j,k)
and link (j,k) has a predicate use - then the path from i to j is both loop-
free and definition-clear.

 STRATEGIES: The structural test strategies discussed below are based on the
program's control flowgraph. They differ in the extent to which predicate uses and/or

computational uses of variables are included in the test set. Various types of data flow
testing strategies in decreasing order of their effectiveness are:

1. All - du Paths (ADUP): The all-du-paths (ADUP) strategy is the strongest
data-flow testing strategy discussed here. It requires that every du path
from every definition of every variable to every use of that definition be
exercised under some test.

For variable X and Y:In Figure 3.9, because variables X and Y are used
only on link (1,3), any test that starts at the entry satisfies this criterion (for
variables X and Y, but not for all variables as required by the strategy).

For variable Z: The situation for variable Z (Figure 3.10) is more
complicated because the variable is redefined in many places. For the
definition on link (1,3) we must exercise paths that include subpaths
(1,3,4) and (1,3,5). The definition on link (4,5) is covered by any path that
includes (5,6), such as subpath (1,3,4,5,6, ...). The (5,6) definition requires
paths that include subpaths (5,6,7,4) and (5,6,7,8).

For variable V: Variable V (Figure 3.11) is defined only once on link (1,3).
Because V has a predicate use at node 12 and the subsequent path to
the end must be forced for both directions at node 12, the all-du-paths
strategy for this variable requires that we exercise all loop-free entry/exit
paths and at least one path that includes the loop caused by (11,4). Note
that we must test paths that include both subpaths (3,4,5) and (3,5) even
though neither of these has V definitions. They must be included because
they provide alternate du paths to the V use on link (5,6). Although (7,4) is
not used in the test set for variable V, it will be included in the test set that
covers the predicate uses of array variable V() and U.

The all-du-paths strategy is a strong criterion, but it does not take as many
tests as it might seem at first because any one test simultaneously
satisfies the criterion for several definitions and uses of several different
variables.

2. All Uses Startegy (AU):The all uses strategy is that at least one definition
clear path from every definition of every variable to every use of that
definition be exercised under some test. Just as we reduced our ambitions
by stepping down from all paths (P) to branch coverage (C2), say, we can
reduce the number of test cases by asking that the test set should include
at least one path segment from every definition to every use that can be
reached by that definition.

For variable V: In Figure 3.11, ADUP requires that we include subpaths
(3,4,5) and (3,5) in some test because subsequent uses of V, such as on
link (5,6), can be reached by either alternative. In AU either (3,4,5) or (3,5)
can be used to start paths, but we don't have to use both. Similarly, we
can skip the (8,10) link if we've included the (8,9,10) subpath. Note the
hole. We must include (8,9,10) in some test cases because that's the only
way to reach the c use at link (9,10) - but suppose our bug for variable V
is on link (8,10) after all? Find a covering set of paths under AU for Figure
3.11.

3. All p-uses/some c-uses strategy (APU+C) : For every variable and
every definition of that variable, include at least one definition free path
from the definition to every predicate use; if there are definitions of the
variables that are not covered by the above prescription, then add
computational use test cases as required to cover every definition.

For variable Z:In Figure 3.10, for APU+C we can select paths that all take
the upper link (12,13) and therefore we do not cover the c-use of Z: but
that's okay according to the strategy's definition because every definition
is covered. Links (1,3), (4,5), (5,6), and (7,8) must be included because
they contain definitions for variable Z. Links (3,4), (3,5), (8,9), (8,10), (9,6),
and (9,10) must be included because they contain predicate uses of Z.
Find a covering set of test cases under APU+C for all variables in this
example - it only takes two tests.

For variable V:In Figure 3.11, APU+C is achieved for V by
(1,3,5,6,7,8,10,11,4,5,6,7,8,10,11,12[upper], 13,2) and
(1,3,5,6,7,8,10,11,12[lower], 13,2). Note that the c-use at (9,10) need not
be included under the APU+C criterion.

4. All c-uses/some p-uses strategy (ACU+P) : The all c-uses/some p-uses
strategy (ACU+P) is to first ensure coverage by computational use cases
and if any definition is not covered by the previously selected paths, add
such predicate use cases as are needed to assure that every definition is
included in some test.

For variable Z: In Figure 3.10, ACU+P coverage is achieved for Z by path
(1,3,4,5,6,7,8,10, 11,12,13[lower], 2), but the predicate uses of several
definitions are not covered. Specifically, the (1,3) definition is not covered
for the (3,5) p-use, the (7,8) definition is not covered for the (8,9), (9,6)
and (9, 10) p-uses.

The above examples imply that APU+C is stronger than
branch coverage but ACU+P may be weaker than, or
incomparable to, branch coverage.

5. All Definitions Strategy (AD) : The all definitions strategy asks only every
definition of every variable be covered by atleast one use of that variable, be that use a
computational use or a predicate use.

For variable Z: Path (1,3,4,5,6,7,8, . . .) satisfies this criterion for variable Z, whereas
any entry/exit path satisfies it for variable V.

From the definition of this strategy we would expect it to be
weaker than both ACU+P and APU+C.

6. All Predicate Uses (APU), All Computational Uses (ACU) Strategies : The all
predicate uses strategy is derived from APU+C strategy by dropping the requirement that
we include a c-use for the variable if there are no p-uses for the variable. The all
computational uses strategy is derived from ACU+P strategy by dropping the

requirement that we include a p-use for the variable if there are no c-uses for the
variable.

It is intuitively obvious that ACU should be weaker than
ACU+P and that APU should be weaker than APU+C.

 ORDERING THE STRATEGIES:

o Figure 3.12 compares path-flow and data-flow testing strategies. The
arrows denote that the strategy at the arrow's tail is stronger than the
strategy at the arrow's head.

Figure 3.12: Relative Strength of Structural Test
Strategies.

o The right-hand side of this graph, along the path from "all paths" to "all
statements" is the more interesting hierarchy for practical applications.

o Note that although ACU+P is stronger than ACU, both are incomparable to
the predicate-biased strategies. Note also that "all definitions" is not
comparable to ACU or APU.

 SLICING AND DICING:

o A (static) program slice is a part of a program (e.g., a selected set of
statements) defined with respect to a given variable X (where X is a
simple variable or a data vector) and a statement i: it is the set of all
statements that could (potentially, under static analysis) affect the value of
X at statement i - where the influence of a faulty statement could result
from an improper computational use or predicate use of some other
variables at prior statements.

o If X is incorrect at statement i, it follows that the bug must be in the
program slice for X with respect to i

o A program dice is a part of a slice in which all statements which are
known to be correct have been removed.

o In other words, a dice is obtained from a slice by incorporating information
obtained through testing or experiment (e.g., debugging).

o The debugger first limits her scope to those prior statements that could
have caused the faulty value at statement i (the slice) and then eliminates
from further consideration those statements that testing has shown to be
correct.

o Debugging can be modeled as an iterative procedure in which slices are
further refined by dicing, where the dicing information is obtained from ad
hoc tests aimed primarily at eliminating possibilities. Debugging ends
when the dice has been reduced to the one faulty statement.

o Dynamic slicing is a refinement of static slicing in which only statements
on achievable paths to the statement in question are included.

4) Explain path sensitizing? Define path instrumentation?(CO5)

PATH SENSITIZING:

2 REVIEW: ACHIEVABLE AND UNACHIEVABLE PATHS:
 We want to select and test enough paths to achieve a

satisfactory notion of test completeness such as C1+C2.
 Extract the programs control flowgraph and select a set of

tentative covering paths.
 For any path in that set, interpret the predicates along the path

as needed to express them in terms of the input vector. In
general individual predicates are compound or may become
compound as a result of interpretation.

 Trace the path through, multiplying the individual compound
predicates to achieve a boolean expression such as

(A+BC) (D+E) (FGH) (IJ) (K) (l) (L).

 Multiply out the expression to achieve a sum of products form:

ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJK
L

 Each product term denotes a set of inequalities that if solved
will yield an input vector that will drive the routine along the
designated path.

 Solve any one of the inequality sets for the chosen path and
you have found a set of input values for the path.

 If you can find a solution, then the path is achievable.
 If you cant find a solution to any of the sets of inequalities, the

path is un achievable.
 The act of finding a set of solutions to the path predicate

expression is called PATH SENSITIZATION.
3 HEURISTIC PROCEDURES FOR SENSITIZING PATHS:

 This is a workable approach, instead of selecting the paths
without considering how to sensitize, attempt to choose a
covering path set that is easy to sensitize and pick hard to
sensitize paths only as you must to achieve coverage.

 Identify all variables that affect the decision.
 Classify the predicates as dependent or independent.
 Start the path selection with un correlated, independent

predicates.
 If coverage has not been achieved using independent

uncorrelated predicates, extend the path set using correlated
predicates.

 If coverage has not been achieved extend the cases to those
that involve dependent predicates.

 Last, use correlated, dependent predicates.

4 PATH INSTRUMENTATION:
 Path instrumentation is what we have to do to confirm that the

outcome was achieved by the intended path.
 Co-incidental Correctness: The coincidental correctness

stands for achieving the desired outcome for wrong reason.

5 Figure 2.11: Coincidental Correctness
6 The above figure is an example of a routine that, for the
(unfortunately) chosen input value (X = 16), yields the same
outcome (Y = 2) no matter which case we select. Therefore, the
tests chosen this way will not tell us whether we have achieved
coverage. For example, the five cases could be totally jumbled and
still the outcome would be the same. Path Instrumentation is
what we have to do to confirm that the outcome was achieved by
the intended path.

 The types of instrumentation methods include:
11 Interpretive Trace Program:

 An interpretive trace program is one that
executes every statement in order and
records the intermediate values of all
calculations, the statement labels
traversed etc.

 If we run the tested routine under a trace,
then we have all the information we need
to confirm the outcome and, furthermore,
to confirm that it was achieved by the
intended path.

 The trouble with traces is that they give
us far more information than we need. In
fact, the typical trace program provides
so much information that confirming the
path from its massive output dump is
more work than simulating the computer
by hand to confirm the path.

11 Traversal Marker or Link Marker:

 A simple and effective form of
instrumentation is called a traversal
marker or link marker.

 Name every link by a lower case letter.
 Instrument the links so that the link's

name is recorded when the link is
executed.

 The succession of letters produced in
going from the routine's entry to its exit
should, if there are no bugs, exactly
correspond to the path name.

11 Figure 2.12: Single Link
Marker Instrumentation

 Why Single Link Markers aren't
enough: Unfortunately, a single link
marker may not do the trick because
links can be chewed by open bugs.

11 Figure 2.13: Why Single
Link Markers aren't

enough.
11 We intended to traverse the ikm path, but

because of a rampaging GOTO in the middle
of the m link, we go to process B. If
coincidental correctness is against us, the
outcomes will be the same and we won't
know about the bug.

11 Two Link Marker Method:
 The solution to the problem of single link

marker method is to implement two
markers per link: one at the beginning of
each link and on at the end.

 The two link markers now specify the
path name and confirm both the
beginning and end of the link.

11 Figure 2.14: Double Link
Marker Instrumentation.

11 Link Counter: A less disruptive (and less
informative) instrumentation method is based on
counters. Instead of a unique link name to be
pushed into a string when the link is traversed, we
simply increment a link counter. We now confirm
that the path length is as expected. The same
problem that led us to double link markers also
leads us to double link counters.

5) List and explain the data flow anomalies?(CO2)

DATA FLOW TESTING:

o Data flow testing is the name given to a family of test strategies based on
selecting paths through the program's control flow in order to explore
sequences of events related to the status of data objects.

o For example, pick enough paths to assure that every data object has been
initialized prior to use or that all defined objects have been used for
something.

.
 DATA FLOW MACHINES:

o There are two types of data flow machines with different architectures. (1)
Von Neumann machnes (2) Multi-instruction, multi-data machines (MIMD).

o Von Neumann Machine Architecture:
 Most computers today are von-neumann machines.
 This architecture features interchangeable storage of

instructions and data in the same memory units.
 The Von Neumann machine Architecture executes one

instruction at a time in the following, micro instruction
sequence:

1. Fetch instruction from memory
2. Interpret instruction
3. Fetch operands
4. Process or Execute
5. Store result
6. Increment program counter
7. GOTO 1

o Multi-instruction, Multi-data machines (MIMD) Architecture:
 These machines can fetch several instructions and objects in

parallel.
 They can also do arithmetic and logical operations

simultaneously on different data objects.

 The decision of how to sequence them depends on the
compiler.

 BUG ASSUMPTION:
o The bug assumption for data-flow testing strategies is that control flow is

generally correct and that something has gone wrong with the software so
that data objects are not available when they should be, or silly things are
being done to data objects.

o Also, if there is a control-flow problem, we expect it to have symptoms that
can be detected by data-flow analysis.

o Although we'll be doing data-flow testing, we won't be using data
flowgraphs as such. Rather, we'll use an ordinary control flowgraph
annotated to show what happens to the data objects of interest at the
moment.

 DATA FLOW GRAPHS:
o The data flow graph is a graph consisting of nodes and directed links.

Figure 3.4: Example of a data flow graph

o We will use an control graph to show what happens to data objects of
interest at that moment.

o Our objective is to expose deviations between the data flows we have and
the data flows we want.

o Data Object State and Usage:
 Data Objects can be created, killed and used.
 They can be used in two distinct ways: (1) In a Calculation (2)

As a part of a Control Flow Predicate.
 The following symbols denote these possibilities:

1. Defined: d - defined, created, initialized etc
2. Killed or undefined: k - killed, undefined, released

etc
3. Usage: u - used for something (c - used in

Calculations, p - used in a predicate)
 1. Defined (d):

 An object is defined explicitly when it appears in a
data declaration.

 Or implicitly when it appears on the left hand side of
the assignment.

 It is also to be used to mean that a file has been
opened.

 A dynamically allocated object has been allocated.
 Something is pushed on to the stack.
 A record written.

1 2. Killed or Undefined (k):
 An object is killed on undefined when it is released

or otherwise made unavailable.
 When its contents are no longer known with

certitude (with aboslute certainity / perfectness).
 Release of dynamically allocated objects back to the

availability pool.
 Return of records.
 The old top of the stack after it is popped.
 An assignment statement can kill and redefine

immediately. For example, if A had been previously
defined and we do a new assignment such as A : =
17, we have killed A's previous value and redefined
A

1 3. Usage (u):
 A variable is used for computation (c) when it

appears on the right hand side of an assignment
statement.

 A file record is read or written.
 It is used in a Predicate (p) when it appears directly

in a predicate.
 DATA FLOW ANOMALIES:
1 An anomaly is denoted by a two-character sequence of actions.
2 For example, ku means that the object is killed and then used, where as dd
means that the object is defined twice without an intervening usage.
3 What is an anomaly is depend on the application.

4 There are nine possible two-letter combinations for d, k and u. some are bugs,
some are suspicious, and some are okay.

11 dd :- probably harmless but suspicious. Why define the object
twice without an intervening usage?

11 dk :- probably a bug. Why define the object without using it?
11 du :- the normal case. The object is defined and then used.
11 kd :- normal situation. An object is killed and then redefined.
11 kk :- harmless but probably buggy. Did you want to be sure it

was really killed?
11 ku :- a bug. the object doesnot exist.
11 ud :- usually not a bug because the language permits

reassignment at almost any time.
11 uk :- normal situation.
11 uu :- normal situation.

2 In addition to the two letter situations, there are six single letter situations.
3 We will use a leading dash to mean that nothing of interest (d,k,u) occurs prior to
the action noted along the entry-exit path of interest.
4 A trailing dash to mean that nothing happens after the point of interest to the exit.
5 They possible anomalies are:

11 -k :- possibly anomalous because from the entrance to this
point on the path, the variable had not been defined. We are
killing a variable that does not exist.

11 -d :- okay. This is just the first definition along this path.
11 -u :- possibly anomalous. Not anomalous if the variable is

global and has been previously defined.
11 k- :- not anomalous. The last thing done on this path was to kill

the variable.
11 d- :- possibly anomalous. The variable was defined and not

used on this path. But this could be a global definition.
11 u- :- not anomalous. The variable was used but not killed on

this path. Although this sequence is not anomalous, it signals a
frequent kind of bug. If d and k mean dynamic storage
allocation and return respectively, this could be an instance in
which a dynamically allocated object was not returned to the
pool after use.

 DATA FLOW ANOMALY STATE GRAPH:
1 Data flow anomaly model prescribes that an object can be in one of four distinct
states:

11 K :- undefined, previously killed, doesnot exist
11 D :- defined but not yet used for anything
11 U :- has been used for computation or in predicate
11 A :- anomalous

2 These capital letters (K,D,U,A) denote the state of the variable and should not be
confused with the program action, denoted by lower case letters.
3 Unforgiving Data - Flow Anomaly Flow Graph:Unforgiving model, in which
once a variable becomes anomalous it can never return to a state of grace.

Figure 3.5: Unforgiving Data Flow Anomaly State
Graph

Assume that the variable starts in the K state - that is, it has not been
defined or does not exist. If an attempt is made to use it or to kill it (e.g.,
say that we're talking about opening, closing, and using files and that
'killing' means closing), the object's state becomes anomalous (state A)
and, once it is anomalous, no action can return the variable to a working
state. If it is defined (d), it goes into the D, or defined but not yet used,
state. If it has been defined (D) and redefined (d) or killed without use (k),
it becomes anomalous, while usage (u) brings it to the U state. If in U,
redefinition (d) brings it to D, u keeps it in U, and k kills it.

4 Forgiving Data - Flow Anomaly Flow Graph:Forgiving model is an alternate
model where redemption (recover) from the anomalous state is possible.

Figure 3.6: Forgiving Data Flow Anomaly State
Graph

This graph has three normal and three anomalous states and he
considers the kk sequence not to be anomalous. The difference between
this state graph and Figure 3.5 is that redemption is possible. A proper
action from any of the three anomalous states returns the variable to a
useful working state.

The point of showing you this alternative anomaly state graph is to
demonstrate that the specifics of an anomaly depends on such things as
language, application, context, or even your frame of mind. In principle,
you must create a new definition of data flow anomaly (e.g., a new state
graph) in each situation. You must at least verify that the anomaly
definition behind the theory or imbedded in a data flow anomaly test tool is
appropriate to your situation.

 STATIC Vs DYNAMIC ANOMALY DETECTION:
1 Static analysis is analysis done on source code without actually executing it. For
example: source code syntax error detection is the static analysis result.
2 Dynamic analysis is done on the fly as the program is being executed and is
based on intermediate values that result from the program's execution. For example: a
division by zero warning is the dynamic result.
3 If a problem, such as a data flow anomaly, can be detected by static analysis
methods, then it doesnot belongs in testing - it belongs in the language processor.
4 There is actually a lot more static analysis for data flow analysis for data flow
anomalies going on in current language processors.
5 For example, language processors which force variable declarations can detect (-
u) and (ku) anomalies.

6 But still there are many things for which current notions of static analysis are
INADEQUATE.
7 Why Static Analysis isn't enough? There are many things for which current
notions of static analysis are inadequate. They are:

 Dead Variables:Although it is often possible to prove that a
variable is dead or alive at a given point in the program, the
general problem is unsolvable.

 Arrays:Arrays are problematic in that the array is defined or
killed as a single object, but reference is to specific locations
within the array. Array pointers are usually dynamically
calculated, so there's no way to do a static analysis to validate
the pointer value. In many languages, dynamically allocated
arrays contain garbage unless explicitly initialized and
therefore, -u anomalies are possible.

 Records and Pointers:The array problem and the difficulty
with pointers is a special case of multipart data structures. We
have the same problem with records and the pointers to them.
Also, in many applications we create files and their names
dynamically and there's no way to determine, without
execution, whether such objects are in the proper state on a
given path or, for that matter, whether they exist at all.

 Dynamic Subroutine and Function Names in a
Call:subroutine or function name is a dynamic variable in a
call. What is passed, or a combination of subroutine names
and data objects, is constructed on a specific path. There's no
way, without executing the path, to determine whether the call
is correct or not.

 False Anomalies:Anomalies are specific to paths. Even a
"clear bug" such as ku may not be a bug if the path along
which the anomaly exist is unachievable. Such "anomalies" are
false anomalies. Unfortunately, the problem of determining
whether a path is or is not achievable is unsolvable.

 Recoverable Anomalies and Alternate State Graphs:What
constitutes an anomaly depends on context, application, and
semantics. How does the compiler know which model I have in
mind? It can't because the definition of "anomaly" is not
fundamental. The language processor must have a built-in
anomaly definition with which you may or may not (with good
reason) agree.

 Concurrency, Interrupts, System Issues:As soon as we get
away from the simple single-task uniprocessor environment
and start thinking in terms of systems, most anomaly issues
become vastly more complicated. How often do we define or
create data objects at an interrupt level so that they can be
processed by a lower-priority routine? Interrupts can make the
"correct" anomalous and the "anomalous" correct. True
concurrency (as in an MIMD machine) and pseudoconcurrency
(as in multiprocessing) systems can do the same to us. Much
of integration and system testing is aimed at detecting data-

flow anomalies that cannot be detected in the context of a
single routine.

2 Although static analysis methods have limits, they are worth using and a
continuing trend in language processor design has been better static analysis methods,
especially for data flow anomaly detection. That's good because it means there's less for
us to do as testers and we have far too much to do as it is.

6) How do convert flow graph into flowchart?(CO4)
1 A program's flow chart resembles a control flow graph.
2 In flow graphs, we don't show the details of what is in a process block.
3 In flow charts every part of the process block is drawn.
4 The flowchart focuses on process steps, where as the flow graph focuses on
control flow of the program.
5 The act of drawing a control flow graph is a useful tool that can help us clarify the
control flow and data flow issues.

 NOTATIONAL EVOULTION:
1 The control flow graph is simplified representation of the program's structure.
2 The notation changes made in creation of control flow graphs:

 The process boxes weren't really needed. There is an implied
process on every line joining junctions and decisions.

 We don't need to know the specifics of the decisions, just the
fact that there is a branch.

 The specific target label names aren't important-just the fact
that they exist. So we can replace them by simple numbers.

 To understand this, we will go through an example (Figure 2.2)
written in a FORTRAN like programming language
calledProgramming Design Language (PDL). The program's
corresponding flowchart (Figure 2.3) and flowgraph (Figure
2.4) were also provided below for better understanding.

 The first step in translating the program to a flowchart is shown
in Figure 2.3, where we have the typical one-for-one classical
flowchart. Note that complexity has increased, clarity has
decreased, and that we had to add auxiliary labels (LOOP, XX,
and YY), which have no actual program counterpart. In Figure
2.4 we merged the process steps and replaced them with the
single process box. We now have a control flowgraph. But this
representation is still too busy. We simplify the notation further
to achieve Figure 2.5, where for the first time we can really see
what the control flow looks like.

Figure 2.2: Program Example (PDL)

Figure 2.3: One-to-one flowchart for
example program in Figure 2.2

Figure 2.4: Control Flowgraph for
example in Figure 2.2

Figure 2.5: Simplified Flowgraph Notation

Figure 2.6: Even Simplified Flowgraph
Notation

The final transformation is shown in Figure 2.6, where we've dropped the
node numbers to achieve an even simpler representation. The way to
work with control flowgraphs is to use the simplest possible
representation.

 7) Explain the process of achieving c1+c2 coverage(CO4)

 PATH TESTING CRITERIA:
1 Any testing strategy based on paths must at least both exercise every instruction
and take branches in all directions.
2 A set of tests that does this is not complete in an absolute sense, but it is
complete in the sense that anything less must leave something untested.
3 So we have explored three different testing criteria or strategies out of a
potentially infinite family of strategies.

1. Path Testing (Pinf):

 Execute all possible control flow paths through the
program: typically, this is restricted to all possible
entry/exit paths through the program.

 If we achieve this prescription, we are said to have
achieved 100% path coverage. This is the strongest
criterion in the path testing strategy family: it is
generally impossible to achieve.

2. Statement Testing (P1):

 Execute all statements in the program at least once
under some test. If we do enough tests to achieve
this, we are said to have achieved 100% statement
coverage.

 An alternate equivalent characterization is to say
that we have achieved 100% node coverage. We
denote this by C1.

 This is the weakest criterion in the family: testing
less than this for new software is unconscionable
(unprincipled or can not be accepted) and should be
criminalized.

3. Branch Testing (P2):
 Execute enough tests to assure that every branch

alternative has been exercised at least once under
some test.

 If we do enough tests to achieve this prescription,
then we have achieved 100% branch coverage.

 An alternative characterization is to say that we
have achieved 100% link coverage.

 For structured software, branch testing and
therefore branch coverage strictly includes
statement coverage.

 We denote branch coverage by C2.
3 Commonsense and Strategies:

 Branch and statement coverage are accepted today as the
minimum mandatory testing requirement.

 The question "why not use a judicious sampling of paths?,
what is wrong with leaving some code, untested?" is ineffectual
in the view of common sense and experience since: (1.) Not
testing a piece of a code leaves a residue of bugs in the
program in proportion to the size of the untested code and the
probability of bugs. (2.) The high probability paths are always
thoroughly tested if only to demonstrate that the system works
properly.

 Which paths to be tested? You must pick enough paths to
achieve C1+C2. The question of what is the fewest number of
such paths is interesting to the designer of test tools that help
automate the path testing, but it is not crucial to the pragmatic
(practical) design of tests. It is better to make many simple
paths than a few complicated paths.

 Path Selection Example:

Figure 2.9: An example flowgraph to
explain path selection

 Practical Suggestions in Path Testing:

11 Draw the control flow graph on a single sheet of
paper.

111 Make several copies - as many as you will need for
coverage (C1+C2) and several more.

111 Use a yellow highlighting marker to trace paths.
Copy the paths onto a master sheets.

111 Continue tracing paths until all lines on the master
sheet are covered, indicating that you appear to
have achieved C1+C2.

111 As you trace the paths, create a table that shows
the paths, the coverage status of each process, and
each decision.

111 The above paths lead to the following table
considering Figure 2.9:

111 After you have traced a a covering path set on the
master sheet and filled in the table for every path,
check the following:

1. Does every decision have a YES and a
NO in its column? (C2)

2. Has every case of all case statements
been marked? (C2)

3. Is every three - way branch (less, equal,
greater) covered? (C2)

4. Is every link (process) covered at least
once? (C1)

111 Revised Path Selection Rules:

 Pick the simplest, functionally sensible
entry/exit path.

 Pick additional paths as small variation
from previous paths. Pick paths that do
not have loops rather than paths that do.
Favor short paths that make sense over
paths that don't.

 Pick additional paths that have no
obvious functional meaning only if it's
necessary to provide coverage.

 Be comfortable with your chosen paths.
Play your hunches (guesses) and give
your intuition free reign as long as you
achieve C1+C2.

 Don't follow rules slavishly (blindly) -
except for coverage.

 8) Explain kinds of loops with respect to path testing?(CO6)

Cases for a single loop:A Single loop can be covered with
two cases: Looping and Not looping. But, experience shows
that many loop-related bugs are not discovered by C1+C2.
Bugs hide themselves in corners and congregate at boundaries
- in the cases of loops, at or around the minimum or maximum
number of times the loop can be iterated. The minimum
number of iterations is often zero, but it need not be.
CASE 1: Single loop, Zero minimum, N maximum, No
excluded values

11 Try bypassing the loop (zero iterations). If you can't,
you either have a bug, or zero is not the minimum
and you have the wrong case.

111 Could the loop-control variable be negative? Could
it appear to specify a negative number of iterations?
What happens to such a value?

111 One pass through the loop.
111 Two passes through the loop.
111 A typical number of iterations, unless covered by a

previous test.
111 One less than the maximum number of iterations.
111 The maximum number of iterations.
111 Attempt one more than the maximum number of

iterations. What prevents the loop-control variable
from having this value? What will happen with this
value if it is forced?

CASE 2: Single loop, Non-zero minimum, No excluded
values

111 Try one less than the expected minimum. What
happens if the loop control variable's value is less
than the minimum? What prevents the value from
being less than the minimum?

111 The minimum number of iterations.
111 One more than the minimum number of iterations.

111 Once, unless covered by a previous test.
111 Twice, unless covered by a previous test.
111 A typical value.
111 One less than the maximum value.
111 The maximum number of iterations.
111 Attempt one more than the maximum number of

iterations.

CASE 3: Single loops with excluded values

 Treat single loops with excluded values as two sets
of tests consisting of loops without excluded values,
such as case 1 and 2 above.

 Example, the total range of the loop control variable
was 1 to 20, but that values 7,8,9,10 were excluded.
The two sets of tests are 1-6 and 11-20.

 The test cases to attempt would be 0,1,2,4,6,7 for
the first range and 10,11,15,19,20,21 for the second
range.

 Kinds of Loops:There are only three kinds of loops with
respect to path testing:

 Nested Loops:
 The number of tests to be performed on

nested loops will be the exponent of the
tests performed on single loops.

 As we cannot always afford to test all
combinations of nested loops' iterations
values. Here's a tactic used to discard
some of these values:

1. Start at the inner most loop.
Set all the outer loops to their
minimum values.

2. Test the minimum,
minimum+1, typical,
maximum-1 , and maximum
for the innermost loop, while
holding the outer loops at their
minimum iteration parameter
values. Expand the tests as
required for out of range and
excluded values.

3. If you've done the outmost
loop, GOTO step 5, else move
out one loop and set it up as
in step 2 with all other loops
set to typical values.

4. Continue outward in this
manner until all loops have
been covered.

5. Do all the cases for all loops
in the nest simultaneously.

 Concatenated Loops:
 Concatenated loops fall between single

and nested loops with respect to test
cases. Two loops are concatenated if it's
possible to reach one after exiting the
other while still on a path from entrance
to exit.

 If the loops cannot be on the same path,
then they are not concatenated and can
be treated as individual loops.

 Horrible Loops:
 A horrible loop is a combination of nested

loops, the use of code that jumps into
and out of loops, intersecting loops,
hidden loops, and cross connected
loops.

 Makes iteration value selection for test cases an
awesome and ugly task, which is another
reason such structures should be avoided.

Figure : Example of Loop types

 Loop Testing TIme:
 Any kind of loop can lead to long testing time,

especially if all the extreme value cases are to
attempted (Max-1, Max, Max+1).

 This situation is obviously worse for nested and
dependent concatenated loops.

 Consider nested loops in which testing the
combination of extreme values lead to long test
times. Several options to deal with:

 Prove that the combined extreme cases
are hypothetically possible, they are not
possible in the real world

Put in limits or checks that prevent the combined
extreme cases. Then you have to test the
software that implements such safety
measures .

 9)Discuss about testing Blindness?(CO1)

2 TESTING BLINDNESS:
 Testing Blindness is a pathological (harmful) situation in which

the desired path is achieved for the wrong reason.
 There are three types of Testing Blindness:

111 Assignment Blindness:
 Assignment blindness occurs when the

buggy predicate appears to work
correctly because the specific value
chosen for an assignment statement
works with both the correct and incorrect
predicate.

 For Example:

Correct Buggy

X = 7
........

if Y > 0
then ...

X = 7
........

if X+Y > 0
then ...

 If the test case sets Y=1 the desired path
is taken in either case, but there is still a
bug.

111 Equality Blindness:
 Equality blindness occurs when the path

selected by a prior predicate results in a
value that works both for the correct and
buggy predicate.

 For Example:

Correct Buggy

if Y = 2 then
........

if X+Y > 3
then ...

if Y = 2 then
........

if X > 1
then ...

 The first predicate if y=2 forces the rest
of the path, so that for any positive value
of x. the path taken at the second
predicate will be the same for the correct
and buggy version.

111 Self Blindness:
 Self blindness occurs when the buggy

predicate is a multiple of the correct
predicate and as a result is
indistinguishable along that path.

 For Example:

Correct Buggy

X = A
........

if X-1 > 0
then ...

X = A
........

if X+A-2 > 0
then ...

 The assignment (x=a) makes the
predicates multiples of each other, so the
direction taken is the same for the correct
and buggy version.

 10) Explain the transaction flow techniques?(CO2)

 GET THE TRANSACTIONS FLOWS:
1 Complicated systems that process a lot of different, complicated transactions
should have explicit representations of the transactions flows, or the equivalent.
2 Transaction flows are like control flow graphs, and consequently we should
expect to have them in increasing levels of detail.
3 The system's design documentation should contain an overview section that
details the main transaction flows.
4 Detailed transaction flows are a mandatory pre requisite to the rational design of
a system's functional test.
 INSPECTIONS, REVIEWS AND WALKTHROUGHS:
1 Transaction flows are natural agenda for system reviews or inspections.
2 In conducting the walkthroughs, you should:

 Discuss enough transaction types to account for 98%-99% of
the transaction the system is expected to process.

 Discuss paths through flows in functional rather than technical
terms.

 Ask the designers to relate every flow to the specification and
to show how that transaction, directly or indirectly, follows from
the requirements.

3 Make transaction flow testing the corner stone of system functional testing just as
path testing is the corner stone of unit testing.
4 Select additional flow paths for loops, extreme values, and domain boundaries.
5 Design more test cases to validate all births and deaths.
6 Publish and distribute the selected test paths through the transaction flows as
early as possible so that they will exert the maximum beneficial effect on the project.

7
 PATH SELECTION:
1 Select a set of covering paths (c1+c2) using the analogous criteria you used for
structural path testing.
2 Select a covering set of paths based on functionally sensible transactions as you
would for control flow graphs.
3 Try to find the most tortuous, longest, strangest path from the entry to the exit of
the transaction flow.
 PATH SENSITIZATION:
1 Most of the normal paths are very easy to sensitize-80% - 95% transaction flow
coverage (c1+c2) is usually easy to achieve.
2 The remaining small percentage is often very difficult.
3 Sensitization is the act of defining the transaction. If there are sensitization
problems on the easy paths, then bet on either a bug in transaction flows or a design
bug.
 PATH INSTRUMENTATION:
1 Instrumentation plays a bigger role in transaction flow testing than in unit path
testing.
2 The information of the path taken for a given transaction must be kept with that
transaction and can be recorded by a central transaction dispatcher or by the individual
processing modules.
3 In some systems, such traces are provided by the operating systems or a running
log.

11) Explain about nice domain and ugly domain?CO4)

 NICE DOMAINS:
1
Domains are and will be defined by an imperfect iterative process aimed at achieving
(user, buyer, voter) satisfaction.
2 Implemented domains can't be incomplete or inconsistent. Every input will be
processed (rejection is a process), possibly forever. Inconsistent domains will be made
consistent.
3 Conversely, specified domains can be incomplete and/or inconsistent. Incomplete
in this context means that there are input vectors for which no path is specified, and
inconsistent means that there are at least two contradictory specifications over the same
segment of the input space.
4 Some important properties of nice domains are: Linear, Complete, Systematic,
Orthogonal, Consistently closed, Convex and Simply connected.
5 To the extent that domains have these properties domain testing is easy as
testing gets.
6 The bug frequency is lesser for nice domain than for ugly domains.

Figure 4.3: Nice Two-Dimensional Domains.

 LINEAR AND NON LINEAR BOUNDARIES:
1 Nice domain boundaries are defined by linear inequalities or equations.
2 The impact on testing stems from the fact that it takes only two points to
determine a straight line and three points to determine a plane and in general n+1 points
to determine a n-dimensional hyper plane.
3 In practice more than 99.99% of all boundary predicates are either linear or can
be linearized by simple variable transformations.
 COMPLETE BOUNDARIES:
1 Nice domain boundaries are complete in that they span the number space from
plus to minus infinity in all dimensions.
2 Figure 4.4 shows some incomplete boundaries. Boundaries A and E have gaps.
3 Such boundaries can come about because the path that hypothetically
corresponds to them is unachievable, because inputs are constrained in such a way that
such values can't exist, because of compound predicates that define a single boundary,
or because redundant predicates convert such boundary values into a null set.
4 The advantage of complete boundaries is that one set of tests is needed to
confirm the boundary no matter how many domains it bounds.
5 If the boundary is chopped up and has holes in it, then every segment of that
boundary must be tested for every domain it bounds.

Figure 4.4: Incomplete Domain Boundaries.

 SYSTEMATIC BOUNDARIES:
1 Systematic boundary means that boundary inequalities related by a simple
function such as a constant.
2 In Figure 4.3 for example, the domain boundaries for u and v differ only by a
constant. We want relations such as

where fi is an arbitrary linear function, X is the input vector, ki and c are constants,
and g(i,c) is a decent function over i and c that yields a constant, such as k + ic.
3 The first example is a set of parallel lines, and the second example is a set of
systematically (e.g., equally) spaced parallel lines (such as the spokes of a wheel, if
equally spaced in angles, systematic).

4 If the boundaries are systematic and if you have one tied down and generate
tests for it, the tests for the rest of the boundaries in that set can be automatically
generated.
 ORTHOGONAL BOUNDARIES:
1 Two boundary sets U and V (See Figure 4.3) are said to be orthogonal if every
inequality in V is perpendicular to every inequality in U.
2 If two boundary sets are orthogonal, then they can be tested independently
3 In Figure 4.3 we have six boundaries in U and four in V. We can confirm the
boundary properties in a number of tests proportional to 6 + 4 = 10 (O(n)). If we tilt the
boundaries to get Figure 4.5, we must now test the intersections. We've gone from a
linear number of cases to a quadratic: from O(n) to O(n2).

Figure 4.5: Tilted Boundaries.

Figure 4.6: Linear, Non-orthogonal Domain
Boundaries.

4 Actually, there are two different but related orthogonality conditions. Sets of
boundaries can be orthogonal to one another but not orthogonal to the coordinate axes
(condition 1), or boundaries can be orthogonal to the coordinate axes (condition 2).
 CLOSURE CONSISTENCY:
1 Figure 4.6 shows another desirable domain property: boundary closures are
consistent and systematic.
2 The shaded areas on the boundary denote that the boundary belongs to the
domain in which the shading lies - e.g., the boundary lines belong to the domains on the
right.
3 Consistent closure means that there is a simple pattern to the closures - for
example, using the same relational operator for all boundaries of a set of parallel
boundaries.
 CONVEX:
1 A geometric figure (in any number of dimensions) is convex if you can take two
arbitrary points on any two different boundaries, join them by a line and all points on that
line lie within the figure.
2 Nice domains are convex; dirty domains aren't.
3 You can smell a suspected concavity when you see phrases such as: ". . . except
if . . .," "However . . .," ". . . but not. . . ." In programming, it's often the buts in the
specification that kill you.
 SIMPLY CONNECTED:
1 Nice domains are simply connected; that is, they are in one piece rather than
pieces all over the place interspersed with other domains.
2 Simple connectivity is a weaker requirement than convexity; if a domain is convex
it is simply connected, but not vice versa.

3 Consider domain boundaries defined by a compound predicate of the (boolean)
form ABC. Say that the input space is divided into two domains, one defined by ABC and,
therefore, the other defined by its negation .
4 For example, suppose we define valid numbers as those lying between 10 and 17
inclusive. The invalid numbers are the disconnected domain consisting of numbers less
than 10 and greater than 17.
5 Simple connectivity, especially for default cases, may be impossible.

 UGLY DOMAINS:
1 Some domains are born ugly and some are uglified by bad specifications.
2 Every simplification of ugly domains by programmers can be either good or bad.
3 Programmers in search of nice solutions will "simplify" essential complexity out of
existence. Testers in search of brilliant insights will be blind to essential complexity and
therefore miss important cases.
4 If the ugliness results from bad specifications and the programmer's simplification
is harmless, then the programmer has made ugly good.
5 But if the domain's complexity is essential (e.g., the income tax code), such
"simplifications" constitute bugs.
6 Nonlinear boundaries are so rare in ordinary programming that there's no
information on how programmers might "correct" such boundaries if they're essential.
 AMBIGUITIES AND CONTRADICTIONS:
1 Domain ambiguities are holes in the input space.
2 The holes may lie with in the domains or in cracks between domains.

Figure 4.7: Domain Ambiguities and
Contradictions.

3 Two kinds of contradictions are possible: overlapped domain specifications and
overlapped closure specifications
4 Figure 4.7c shows overlapped domains and Figure 4.7d shows dual closure
assignment.
 SIMPLIFYING THE TOPOLOGY:
1 The programmer's and tester's reaction to complex domains is the same -
simplify
2 There are three generic cases: concavities, holes and disconnected pieces.
3 Programmers introduce bugs and testers misdesign test cases by: smoothing out
concavities (Figure 4.8a), filling in holes (Figure 4.8b), and joining disconnected pieces
(Figure 4.8c).

Figure : Simplifying the topology.

 RECTIFYING BOUNDARY CLOSURES:
1 If domain boundaries are parallel but have closures that go every which way (left,
right, left, . . .) the natural reaction is to make closures go the same way (see Figure 4.9).

Figure 4.9: Forcing Closure Consistency.

12)Explain briefly about Domain Testing?

 DOMAIN TESTING STRATEGY: The domain-testing strategy is simple, although
possibly tedious (slow).

1. Domains are defined by their boundaries; therefore, domain testing
concentrates test points on or near boundaries.

2. Classify what can go wrong with boundaries, then define a test strategy
for each case. Pick enough points to test for all recognized kinds of
boundary errors.

3. Because every boundary serves at least two different domains, test points
used to check one domain can also be used to check adjacent domains.
Remove redundant test points.

4. Run the tests and by posttest analysis (the tedious part) determine if any
boundaries are faulty and if so, how.

5. Run enough tests to verify every boundary of every domain.
 DOMAIN BUGS AND HOW TO TEST FOR THEM:

o An interior point (Figure 4.10) is a point in the domain such that all points
within an arbitrarily small distance (called an epsilon neighborhood) are
also in the domain.

o A boundary point is one such that within an epsilon neighborhood there
are points both in the domain and not in the domain.

o An extreme point is a point that does not lie between any two other
arbitrary but distinct points of a (convex) domain.

Figure 4.10: Interior, Boundary and Extreme
points.

o An on point is a point on the boundary.
o If the domain boundary is closed, an off point is a point near the

boundary but in the adjacent domain.
o If the boundary is open, an off point is a point near the boundary but in the

domain being tested; see Figure 4.11. You can remember this by the
acronym COOOOI: Closed Off Outside, Open Off Inside.

Figure 4.11: On points and Off points.

o Figure 4.12 shows generic domain bugs: closure bug, shifted boundaries,
tilted boundaries, extra boundary, missing boundary.

Figure 4.12: Generic Domain Bugs.

 TESTING ONE DIMENSIONAL DOMAINS:
o Figure 4.13 shows possible domain bugs for a one-dimensional open

domain boundary.
o The closure can be wrong (i.e., assigned to the wrong domain) or the

boundary (a point in this case) can be shifted one way or the other, we
can be missing a boundary, or we can have an extra boundary.

Figure 4.13: One Dimensional Domain Bugs, Open
Boundaries.

o In Figure 4.13a we assumed that the boundary was to be open for A. The
bug we're looking for is a closure error, which converts > to >= or < to <=
(Figure 4.13b). One test (marked x) on the boundary point detects this
bug because processing for that point will go to domain A rather than B.

o In Figure 4.13c we've suffered a boundary shift to the left. The test point
we used for closure detects this bug because the bug forces the point
from the B domain, where it should be, to A processing. Note that we can't
distinguish between a shift and a closure error, but we do know that we
have a bug.

o Figure 4.13d shows a shift the other way. The on point doesn't tell us
anything because the boundary shift doesn't change the fact that the test
point will be processed in B. To detect this shift we need a point close to
the boundary but within A. The boundary is open, therefore by definition,
the off point is in A (Open Off Inside).

o The same open off point also suffices to detect a missing boundary
because what should have been processed in A is now processed in B.

o To detect an extra boundary we have to look at two domain boundaries. In
this context an extra boundary means that A has been split in two. The

two off points that we selected before (one for each boundary) does the
job. If point C had been a closed boundary, the on test point at C would do
it.

o For closed domains look at Figure 4.14. As for the open boundary, a test
point on the boundary detects the closure bug. The rest of the cases are
similar to the open boundary, except now the strategy requires off points
just outside the domain.

Figure 4.14: One Dimensional Domain Bugs,
Closed Boundaries.

 TESTING TWO DIMENSIONAL DOMAINS:
o Figure 4.15 shows possible domain boundary bugs for a two-dimensional

domain.
o A and B are adjacent domains and the boundary is closed with respect to

A, which means that it is open with respect to B.

Figure 4.15: Two Dimensional Domain Bugs.

o For Closed Boundaries:
1. Closure Bug: Figure 4.15a shows a faulty closure, such as

might be caused by using a wrong operator (for example, x >=
k when x > k was intended, or vice versa). The two on points
detect this bug because those values will get B rather than A
processing.

2. Shifted Boundary: In Figure 4.15b the bug is a shift up, which
converts part of domain B into A processing, denoted by A'.
This result is caused by an incorrect constant in a predicate,
such as x + y >= 17 when x + y >= 7 was intended. The off
point (closed off outside) catches this bug. Figure 4.15c shows
a shift down that is caught by the two on points.

3. Tilted Boundary: A tilted boundary occurs when coefficients in
the boundary inequality are wrong. For example, 3x + 7y > 17
when 7x + 3y > 17 was intended. Figure 4.15d has a tilted
boundary, which creates erroneous domain segments A' and
B'. In this example the bug is caught by the left on point.

4. Extra Boundary: An extra boundary is created by an extra
predicate. An extra boundary will slice through many different
domains and will therefore cause many test failures for the
same bug. The extra boundary in Figure 4.15e is caught by two
on points, and depending on which way the extra boundary
goes, possibly by the off point also.

5. Missing Boundary: A missing boundary is created by leaving
a boundary predicate out. A missing boundary will merge
different domains and will cause many test failures although
there is only one bug. A missing boundary, shown in Figure
4.15f, is caught by the two on points because the processing
for A and B is the same - either A or B processing.

 PROCEDURE FOR TESTING: The procedure is conceptually is straight forward. It
can be done by hand for two dimensions and for a few domains and practically
impossible for more than two variables.

1. Identify input variables.
2. Identify variable which appear in domain defining predicates, such as

control flow predicates.
3. Interpret all domain predicates in terms of input variables.
4. For p binary predicates, there are at most 2p combinations of TRUE-

FALSE values and therefore, at most 2p domains. Find the set of all non
null domains. The result is a boolean expression in the predicates
consisting a set of AND terms joined by OR's. For example
ABC+DEF+GHI Where the capital letters denote predicates. Each
product term is a set of linear inequality that defines a domain or a part of
a multiply connected domains.

Solve these inequalities to find all the extreme points of each domain using any of the
linear programming methods

13)Explain Domain and Interface Testing in detail?

 DOMAINS AND RANGE:
o The set of output values produced by a function is called the range of the

function, in contrast with the domain, which is the set of input values over
which the function is defined.

o For most testing, our aim has been to specify input values and to predict
and/or confirm output values that result from those inputs.

o Interface testing requires that we select the output values of the calling
routine i.e. caller's range must be compatible with the called routine's
domain.

o An interface test consists of exploring the correctness of the following
mappings:

o caller domain --> caller range
(caller unit test)

o caller range --> called domain
(integration test)

o called domain --> called range
(called unit test)

 CLOSURE COMPATIBILITY:

o Assume that the caller's range and the called domain spans the same
numbers - for example, 0 to 17.

o Figure 4.16 shows the four ways in which the caller's range closure and
the called's domain closure can agree.

o The thick line means closed and the thin line means open. Figure 4.16
shows the four cases consisting of domains that are closed both on top
(17) and bottom (0), open top and closed bottom, closed top and open
bottom, and open top and bottom.

Figure 4.16: Range / Domain Closure Compatibility.

o Figure 4.17 shows the twelve different ways the caller and the called can
disagree about closure. Not all of them are necessarily bugs. The four
cases in which a caller boundary is open and the called is closed (marked
with a "?") are probably not buggy. It means that the caller will not supply
such values but the called can accept them.

Figure 4.17: Equal-Span Range / Domain
Compatibility Bugs.

 SPAN COMPATIBILITY:
o Figure 4.18 shows three possibly harmless span incompatibilities.

Figure 4.18: Harmless Range / Domain Span
incompatibility bug (Caller Span is smaller than

Called).

o In all cases, the caller's range is a subset of the called's domain. That's
not necessarily a bug.

o The routine is used by many callers; some require values inside a range
and some don't. This kind of span incompatibility is a bug only if the caller
expects the called routine to validate the called number for the caller.

o Figure 4.19a shows the opposite situation, in which the called routine's
domain has a smaller span than the caller expects. All of these examples
are buggy.

Figure 4.19: Buggy Range / Domain Mismatches

o In Figure 4.19b the ranges and domains don't line up; hence good values
are rejected, bad values are accepted, and if the called routine isn't robust
enough, we have crashes.

o Figure 4.19c combines these notions to show various ways we can have
holes in the domain: these are all probably buggy.

 INTERFACE RANGE / DOMAIN COMPATIBILITY TESTING:
o For interface testing, bugs are more likely to concern single variables

rather than peculiar combinations of two or more variables.
o Test every input variable independently of other input variables to confirm

compatibility of the caller's range and the called routine's domain span
and closure of every domain defined for that variable.

o There are two boundaries to test and it's a one-dimensional domain;
therefore, it requires one on and one off point per boundary or a total of
two on points and two off points for the domain - pick the off points
appropriate to the closure (COOOOI).

o Start with the called routine's domains and generate test points in
accordance to the domain-testing strategy used for that routine in
component testing.

o Unless you're a mathematical whiz you won't be able to do this without
tools for more than one variable at a time.

14)Explain Transaction flows in detail?

TRANSACTION FLOWS:

o A transaction is a unit of work seen from a system user's point of view.
o A transaction consists of a sequence of operations, some of which are

performed by a system, persons or devices that are outside of the system.
o Transaction begin with Birth-that is they are created as a result of some

external act.
o At the conclusion of the transaction's processing, the transaction is no

longer in the system.
o Example of a transaction: A transaction for an online information

retrieval system might consist of the following steps or tasks:
 Accept input (tentative birth)
 Validate input (birth)
 Transmit acknowledgement to requester
 Do input processing
 Search file
 Request directions from user
 Accept input
 Validate input
 Process request
 Update file
 Transmit output
 Record transaction in log and clean up (death)

 TRANSACTION FLOW GRAPHS:
o Transaction flows are introduced as a representation of a system's

processing.
o The methods that were applied to control flow graphs are then used for

functional testing.
o Transaction flows and transaction flow testing are to the independent

system tester what control flows are path testing are to the programmer.
o The transaction flow graph is to create a behavioral model of the program

that leads to functional testing.
o The transaction flowgraph is a model of the structure of the system's

behavior (functionality).
o An example of a Transaction Flow is as follows:

Figure 3.1: An Example of a Transaction Flow

 USAGE:
o Transaction flows are indispensable for specifying requirements of

complicated systems, especially online systems.
o A big system such as an air traffic control or airline reservation system,

has not hundreds, but thousands of different transaction flows.
o The flows are represented by relatively simple flowgraphs, many of which

have a single straight-through path.
o Loops are infrequent compared to control flowgraphs.
o The most common loop is used to request a retry after user input errors.

An ATM system, for example, allows the user to try, say three times, and
will take the card away the fourth time.

 COMPLICATIONS:
o In simple cases, the transactions have a unique identity from the time

they're created to the time they're completed.
o In many systems the transactions can give birth to others, and

transactions can also merge.

o Births:There are three different possible interpretations of the decision
symbol, or nodes with two or more out links. It can be a Decision, Biosis
or a Mitosis.

11 Decision:Here the transaction will take one alternative or the
other alternative but not both. (See Figure 3.2 (a))

11 Biosis:Here the incoming transaction gives birth to a new
transaction, and both transaction continue on their separate
paths, and the parent retains it identity. (See Figure 3.2 (b))

11 Mitosis:Here the parent transaction is destroyed and two new
transactions are created.(See Figure 3.2 (c))

Figure 3.2: Nodes with multiple outlinks

o Mergers:Transaction flow junction points are potentially as troublesome
as transaction flow splits. There are three types of junctions: (1) Ordinary
Junction (2) Absorption (3) Conjugation

11 Ordinary Junction: An ordinary junction which is similar to the
junction in a control flow graph. A transaction can arrive either
on one link or the other. (See Figure 3.3 (a))

11 Absorption: In absorption case, the predator transaction
absorbs prey transaction. The prey gone but the predator
retains its identity. (See Figure 3.3 (b))

11 Conjugation: In conjugation case, the two parent transactions
merge to form a new daughter. In keeping with the biological
flavor this case is called as conjugation.(See Figure 3.3 (c))

Figure 3.3: Transaction Flow Junctions and
Mergers

o We have no problem with ordinary decisions and junctions. Births,
absorptions, and conjugations are as problematic for the software
designer as they are for the software modeler and the test designer; as a
consequence, such points have more than their share of bugs. The
common problems are: lost daughters, wrongful deaths, and illegitimate
births.

15) what are the different kinds of bugs that arise in Software testing?

 The major categories are: (1) Requirements, Features and Functionality Bugs (2)
Structural Bugs (3) Data Bugs (4) Coding Bugs (5) Interface, Integration and System
Bugs (6) Test and Test Design Bugs.

o REQUIREMENTS, FEATURES AND FUNCTIONALITY BUGS: Various
categories in Requirements, Features and Functionlity bugs include:

1. Requirements and Specifications Bugs:
 Requirements and specifications developed from

them can be incomplete ambiguous, or self-
contradictory. They can be misunderstood or
impossible to understand.

 The specifications that don't have flaws in them may
change while the design is in progress. The features
are added, modified and deleted.

 Requirements, especially, as expressed in
specifications are a major source of expensive
bugs.

 The range is from a few percentage to more than
50%, depending on the application and
environment.

 What hurts most about the bugs is that they are the
earliest to invade the system and the last to leave.

2. Feature Bugs:

 Specification problems usually create corresponding
feature problems.

 A feature can be wrong, missing, or superfluous
(serving no useful purpose). A missing feature or
case is easier to detect and correct. A wrong feature
could have deep design implications.

 Removing the features might complicate the
software, consume more resources, and foster more
bugs.

3. Feature Interaction Bugs:
 Providing correct, clear, implementable and testable

feature specifications is not enough.
 Features usually come in groups or related features.

The features of each group and the interaction of
features with in the group are usually well tested.

 The problem is unpredictable interactions between
feature groups or even between individual features.
For example, your telephone is provided with call
holding and call forwarding. The interactions
between these two features may have bugs.

 Every application has its peculiar set of features and
a much bigger set of unspecified feature interaction
potentials and therefore result in feature interaction
bugs.

Specification and Feature Bug Remedies:

 Most feature bugs are rooted in human to human
communication problems. One solution is to use high-level,
formal specification languages or systems.

 Such languages and systems provide short term support but in
the long run, does not solve the problem.

 Short term Support: Specification languages facilitate
formalization of requirements and inconsistency and ambiguity
analysis.

 Long term Support: Assume that we have a great
specification language and that can be used to create
unambiguous, complete specifications with unambiguous
complete testsand consistent test criteria.

 The specification problem has been shifted to a higher level but
not eliminated.

Testing Techniques for functional bugs: Most functional test
techniques- that is those techniques which are based on a behavioral
description of software, such as transaction flow testing, syntax testing,
domain testing, logic testing and state testing are useful in testing
functional bugs.

o STRUCTURAL BUGS: Various categories in Structural bugs include:

1. Control and Sequence Bugs:
 Control and sequence bugs include paths left out,
unreachable code, improper nesting of loops, loop-back or loop
termination criteria incorrect, missing process steps, duplicated
processing, unnecessary processing, rampaging, GOTO's, ill-conceived
(not properly planned) switches, sphagetti code, and worst of all,
pachinko code.

 One reason for control flow bugs is that this area is
amenable (supportive) to theoritical treatment.

 Most of the control flow bugs are easily tested and
caught in unit testing.

 Another reason for control flow bugs is that use of
old code especially ALP & COBOL code are dominated by control flow bugs.

 Control and sequence bugs at all levels are caught
by testing, especially structural testing, more
specifically path testing combined with a bottom line
functional test based on a specification.

2. Logic Bugs:
 Bugs in logic, especially those related to

misundertanding how case statements and logic
operators behave singly and combinations

 Also includes evaluation of boolean expressions in
deeply nested IF-THEN-ELSE constructs.

 If the bugs are parts of logical (i.e. boolean)
processing not related to control flow, they are
characterized as processing bugs.

 If the bugs are parts of a logical expression (i.e
control-flow statement) which is used to direct the
control flow, then they are categorized as control-
flow bugs.

3. Processing Bugs:
 Processing bugs include arithmetic bugs, algebraic,

mathematical function evaluation, algorithm
selection and general processing.

 Examples of Processing bugs include: Incorrect
conversion from one data representation to other,
ignoring overflow, improper use of grater-than-or-
eual etc

 Although these bugs are frequent (12%), they tend
to be caught in good unit testing.

4. Initialization Bugs:
 Initialization bugs are common. Initialization bugs

can be improper and superfluous.
 Superfluous bugs are generally less harmful but can

affect performance.
 Typical initialization bugs include: Forgetting to

initialize the variables before first use, assuming that
they are initialized elsewhere, initializing to the
wrong format, representation or type etc

 Explicit declaration of all variables, as in Pascal, can
reduce some initialization problems.

5. Data-Flow Bugs and Anomalies:
 Most initialization bugs are special case of data flow

anamolies.
 A data flow anomaly occurs where there is a path

along which we expect to do something
unreasonable with data, such as using an
uninitialized variable, attempting to use a variable
before it exists, modifying and then not storing or
using the result, or initializing twice without an
intermediate use.

o DATA BUGS:

 Data bugs include all bugs that arise from the specification of
data objects, their formats, the number of such objects, and
their initial values.

 Data Bugs are atleast as common as bugs in code, but they
are foten treated as if they didnot exist at all.

 Code migrates data: Software is evolving towards programs in
which more and more of the control and processing functions
are stored in tables.

 Because of this, there is an increasing awareness that bugs in
code are only half the battle and the data problems should be
given equal attention.

 Dynamic Data Vs Static data:
 Dynamic data are transitory. Whatever their purpose

their lifetime is relatively short, typically the
processing time of one transaction. A storage object
may be used to hold dynamic data of different types,
with different formats, attributes and residues.

 Dynamic data bugs are due to leftover garbage in a
shared resource. This can be handled in one of the
three ways: (1) Clean up after the use by the user
(2) Common Cleanup by the resource manager (3)
No Clean up

 Static Data are fixed in form and content. They
appear in the source code or database directly or
indirectly, for example a number, a string of
characters, or a bit pattern.

 Compile time processing will solve the bugs caused
by static data.

 Information, parameter, and control: Static or dynamic data
can serve in one of three roles, or in combination of roles: as a
parameter, for control, or for information.

 Content, Structure and Attributes: Content can be an actual
bit pattern, character string, or number put into a data

structure. Content is a pure bit pattern and has no meaning
unless it is interpreted by a hardware or software processor. All
data bugs result in the corruption or misinterpretation of
content. Structure relates to the size, shape and numbers that
describe the data object, that is memory location used to store
the content. (e.g A two dimensional array). Attributes relates
to the specification meaning that is the semantics associated
with the contents of a data object. (e.g. an integer, an
alphanumeric string, a subroutine). The severity and subtlelty
of bugs increases as we go from content to attributes because
the things get less formal in that direction.

o CODING BUGS:
 Coding errors of all kinds can create any of the other kind of

bugs.
 Syntax errors are generally not important in the scheme of

things if the source language translator has adequate syntax
checking.

 If a program has many syntax errors, then we should expect
many logic and coding bugs.

 The documentation bugs are also considered as coding bugs
which may mislead the maintenance programmers.

o INTERFACE, INTEGRATION, AND SYSTEM BUGS:
 Various categories of bugs in Interface, Integration, and

System Bugs are:

11 External Interfaces:
 The external interfaces are the means

used to communicate with the world.
 These include devices, actuators,

sensors, input terminals, printers, and
communication lines.

 The primary design criterion for an
interface with outside world should be
robustness.

 All external interfaces, human or
machine should employ a protocol. The
protocol may be wrong or incorrectly
implemented.

 Other external interface bugs are: invalid
timing or sequence assumptions related
to external signals

 Misunderstanding external input or
output formats.

 Insufficient tolerance to bad input data.

11 Internal Interfaces:
 Internal interfaces are in principle not

different from external interfaces but they
are more controlled.

 A best example for internal interfaces are
communicating routines.

 The external environment is fixed and the
system must adapt to it but the internal
environment, which consists of interfaces
with other components, can be
negotiated.

 Internal interfaces have the same
problem as external interfaces.

11 Hardware Architecture:
 Bugs related to hardware architecture

originate mostly from misunderstanding
how the hardware works.

 Examples of hardware architecture bugs:
address generation error, i/o device
operation / instruction error, waiting too
long for a response, incorrect interrupt
handling etc.

 The remedy for hardware architecture
and interface problems is two fold: (1)
Good Programming and Testing (2)
Centralization of hardware interface
software in programs written by hardware
interface specialists.

11 Operating System Bugs:
 Program bugs related to the operating

system are a combination of hardware
architecture and interface bugs mostly
caused by a misunderstanding of what it
is the operating system does.

 Use operating system interface
specialists, and use explicit interface
modules or macros for all operating
system calls.

 This approach may not eliminate the
bugs but at least will localize them and
make testing easier.

11 Software Architecture:
 Software architecture bugs are the kind

that called - interactive.
 Routines can pass unit and integration

testing without revealing such bugs.
 Many of them depend on load, and their

symptoms emerge only when the system
is stressed.

 Sample for such bugs: Assumption that
there will be no interrupts, Failure to
block or un block interrupts, Assumption
that memory and registers were
initialized or not initialized etc

 Careful integration of modules and
subjecting the final system to a stress
test are effective methods for these bugs.

11 Control and Sequence Bugs (Systems Level):
 These bugs include: Ignored timing,

Assuming that events occur in a
specified sequence, Working on data
before all the data have arrived from
disc, Waiting for an impossible
combination of prerequisites, Missing,
wrong, redundant or superfluous process
steps.

 The remedy for these bugs is highly
structured sequence control.

 Specialize, internal, sequence control
mechanisms are helpful.

11 Resource Management Problems:
 Memory is subdivided into dynamically

allocated resources such as buffer
blocks, queue blocks, task control blocks,
and overlay buffers.

 External mass storage units such as
discs, are subdivided into memory
resource pools.

 Some resource management and usage
bugs: Required resource not obtained,
Wrong resource used, Resource is
already in use, Resource dead lock etc

 Resource Management Remedies: A
design remedy that prevents bugs is
always preferable to a test method that
discovers them.

 The design remedy in resource
management is to keep the resource
structure simple: the fewest different
kinds of resources, the fewest pools, and
no private resource management.

11 Integration Bugs:
 Integration bugs are bugs having to do

with the integration of, and with the
interfaces between, working and tested
components.

 These bugs results from inconsistencies
or incompatibilities between components.

 The communication methods include
data structures, call sequences,
registers, semaphores, communication
links and protocols results in integration
bugs.

 The integration bugs do not constitute a
big bug category(9%) they are expensive
category because they are usually
caught late in the game and because
they force changes in several
components and/or data structures.

11 System Bugs:
 System bugs covering all kinds of bugs

that cannot be ascribed to a component
or to their simple interactions, but result
from the totality of interactions between
many components such as programs,
data, hardware, and the operating
systems.

 There can be no meaningful system
testing until there has been thorough
component and integration testing.

 System bugs are infrequent(1.7%) but
very important because they are often
found only after the system has been
fielded.

 TEST AND TEST DESIGN BUGS:

 Testing: testers have no immunity to bugs. Tests
require complicated scenarios and databases.

 They require code or the equivalent to execute and
consequently they can have bugs.

 Test criteria: if the specification is correct, it is
correctly interpreted and implemented, and a proper
test has been designed; but the criterion by which
the software's behavior is judged may be incorrect
or impossible. So, a proper test criteria has to be
designed. The more complicated the criteria, the
likelier they are to have bugs.

 Remedies: The remedies of test bugs are:

11 Test Debugging: The first remedy for
test bugs is testing and debugging the
tests. Test debugging, when compared to
program debugging, is easier because
tests, when properly designed are

simpler than programs and donot have to
make concessions to efficiency.

11 Test Quality Assurance: Programmers
have the right to ask how quality in
independent testing is monitored.

11 Test Execution Automation: The
history of software bug removal and
prevention is indistinguishable from the
history of programming automation aids.
Assemblers, loaders, compilers are
developed to reduce the incidence of
programming and operation errors. Test
execution bugs are virtually eliminated by
various test execution automation tools.

11 Test Design Automation: Just as much
of software development has been
automated, much test design can be and
has been automated. For a given
productivity rate, automation reduces the
bug count - be it for software or be it for
tests.

	2) Discuss path testing criteria?(CO5)
	Figure 2.9: An example flowgraph to explain path selection
	Figure 3.12: Relative Strength of Structural Test Strategies.
	PATH SENSITIZING:
	(A+BC) (D+E) (FGH) (IJ) (K) (l) (L).
	ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJKL
	5 Figure 2.11: Coincidental Correctness
	3. Figure 2.12: Single Link Marker Instrumentation
	4. Figure 2.13: Why Single Link Markers aren't enough.
	7. Figure 2.14: Double Link Marker Instrumentation.
	Figure 3.4: Example of a data flow graph
	Figure 3.5: Unforgiving Data Flow Anomaly State Graph
	Figure 3.6: Forgiving Data Flow Anomaly State Graph
	Figure 2.2: Program Example (PDL)
	Figure 2.3: One-to-one flowchart for example program in Figure 2.2
	Figure 2.4: Control Flowgraph for example in Figure 2.2
	Figure 2.5: Simplified Flowgraph Notation
	Figure 2.6: Even Simplified Flowgraph Notation
	Figure 2.9: An example flowgraph to explain path selection
	Figure : Example of Loop types
	Figure 4.3: Nice Two-Dimensional Domains.
	Figure 4.4: Incomplete Domain Boundaries.
	Figure 4.5: Tilted Boundaries.
	Figure 4.6: Linear, Non-orthogonal Domain Boundaries.
	Figure 4.7: Domain Ambiguities and Contradictions.
	Figure : Simplifying the topology.
	Figure 4.9: Forcing Closure Consistency.
	Figure 4.10: Interior, Boundary and Extreme points.
	Figure 4.11: On points and Off points.
	Figure 4.12: Generic Domain Bugs.
	Figure 4.13: One Dimensional Domain Bugs, Open Boundaries.
	Figure 4.14: One Dimensional Domain Bugs, Closed Boundaries.
	Figure 4.15: Two Dimensional Domain Bugs.
	Figure 4.16: Range / Domain Closure Compatibility.
	Figure 4.17: Equal-Span Range / Domain Compatibility Bugs.
	Figure 4.18: Harmless Range / Domain Span incompatibility bug (Caller Span is smaller than Called).
	Figure 4.19: Buggy Range / Domain Mismatches
	TRANSACTION FLOWS:
	Figure 3.1: An Example of a Transaction Flow
	Figure 3.2: Nodes with multiple outlinks
	Figure 3.3: Transaction Flow Junctions and Mergers

