
LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 1 

 

UNIT-III (PROCESS & SIGNALS) 

1Q) Define a Process in UNIX or POSIX system? 

A Process is a program under execution in a UNIX or POSIX system. 

2Q)  List the ways for Termination of a Process? 

There are eight ways for a process to terminate.  

Normal termination occurs in five ways: 

 Return from main 

 Calling exit 

 Calling _exit or _Exit 

 Return of the last thread from its start routine 

 Calling pthread_exit from the last thread  

Abnormal termination occurs in three ways: 

 Calling abort 

 Receipt of a signal 

 Response of the last thread to a cancellation request 

3Q) Explain about the system calls which will be used for Normal termination of a process? 

Three functions terminate a program normally: _exit and _Exit, which return to the kernel 

immediately, and exit, which performs certain cleanup processing and then returns to the 

kernel. 

#include <stdlib.h>  

void exit(int status); 

 void _Exit(int status); 

 

#include <unistd.h> 

 void _exit(int status); 

 

All three exit functions expect a single integer argument, called the exit status.  Returning an 

integer value from   the 

main function is equivalent to calling exit with the same value. Thus 

exit(0);  is the same as return(0); 

from the main function. 

 

In the following situations the exit status of the process is undefined. 

 any of these functions is called without an exit status. 

 main does a return without a return value 

4Q) Explain the Environment List? 

 Like the argument list, the environment list is an array of character pointers, with each 
pointer containing the address of a null-terminated C string. The address of the array of pointers 
is contained in the global variable environ: Generally any environmental variable is of the form: 
name=value. 

extern char **environ; 

Figure: Environment consisting of five C character strings 

 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 2 

 

 

5Q) Explain the Memory Layout of a C Program in Memory? 

 MEMORY LAYOUT OF A C PROGRAM 

Historically, a C program has been composed of the following pieces: 

 Text segment, the machine instructions that the CPU executes. Usually, the text segment 
is sharable so that only a single copy needs to be in memory for frequently executed 
programs, such as text editors, the C compiler, the shells, and so on. Also, the text 
segment is often read-only, to prevent a program from accidentally modifying its 
instructions.

 Initialized data segment usually called simply the data segment, containing variables 
that are specifically initialized in the program. For example, the C declaration

 int maxcount = 99; 

o appearing outside any function causes this variable to be stored in the initialized 
data segment with its initial value. 

 Uninitialized data segment, often called the "bss" segment, named after an ancient 
assembler operator that stood for "block started by symbol." Data in this segment is 
initialized by the kernel to arithmetic 0 or null pointers before the program starts 
executing. The C declaration

 long sum[1000]; 

o appearing outside any function causes this variable to be stored in the 
uninitialized data segment. 

 Stack, where automatic variables are stored, along with information that is saved each 
time a function is called. Each time a function is called, the address of where to return to 
and certain information about the caller's environment, such as some of the machine 
registers, are saved on the stack. The newly called function then allocates room on the 
stack for its automatic and temporary variables. This is how recursive functions in C can 
work. Each time a recursive function calls itself, a new stack frame is used, so one set of 
variables doesn't interfere with the variables from another instance of the function.

 Heap, where dynamic memory allocation usually takes place. Historically, the heap has 
been located between the uninitialized data and the stack.

 

6Q) Explain about Process Environment- Environment variables? 
 The environment strings are usually of the form: name=value. The UNIX kernel never 
looks at these strings; their interpretation is up to the various applications. The shells, for 
example, use numerous environment variables. Some, such as HOME and USER, are set 
automatically at login, and others are for us to set. We normally set environment variables in a 
shell start-up file to control the shell’s actions. The functions that we can use to set and fetch 
values from the variables are setenv, putenv, and getenv functions. The prototype of these 
functions are 

#include <stdlib.h> 

char *getenv(const char *name); 

Returns: pointer to value associated with name, NULL if not found. 

Note that this function returns a pointer to the value of a name=value string. We should always 
use getenv to fetch  a specific value from the environment, instead of accessing environ directly. 
In addition to fetching the value of an environment variable, sometimes we may want to set an 
environment variable. We may want to change the value of an existing variable or add a new 
variable to the environment. The prototypes of these functions are 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 3 

 

#include <stdlib.h> int putenv(char *str); 

int setenv(const char *name, const char value, int rewrite);  

int unsetenv(const char *name); 

All return: 0 if OK, nonzero on error. 
 The putenv function takes a string of the form name=value and places it in the 

environment list. If name already exists, its old definition is first removed.
 The setenv function sets name to value. If name already exists in the environment, then

(a) if rewrite is nonzero, the existing definition for name is first removed; 
(b) if rewrite is 0, an existing definition for name is not removed, name is not set to the 
new value, and no error occurs. 

 The unsetenv function removes any definition of name. It is not an error if such a 

definition does not exist. Note  the  difference  between  putenv and  setenv.  Whereas  

setenv must  allocate  memory  to  create  the

name=value string from its arguments, putenv is free to place the string passed to it directly into 
the environment. 

 

 
Environment variables defined in the Single UNIX Specification 

Variable Description  

COLUMNS terminal width  

DATEMSK getdate(3) template file pathname  

HOME home directory  

LANG name of locale  

LC_ALL name of locale  

LC_COLLATE name of locale for collation  

LC_CTYPE name of locale for character classification  

LC_MESSAGES name of locale for messages  

LC_MONETARY name of locale for monetary editing  

LC_NUMERIC name of locale for numeric editing  

LC_TIME name of locale for date/time formatting  

LINES terminal height  

LOGNAME login name  

MSGVERB fmtmsg(3) message components to process  

NLSPATH sequence of templates for message catalogs  

PATH list of path prefixes to search for executable file  

PWD absolute pathname of current working directory  

SHELL name of user's preferred shell  

TERM terminal type  

TMPDIR pathname of directory for creating temporary files  

TZ time zone information  

 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 4 

 

 

7Q) Explain the Kernel support for Process? 

  
 The data structure and execution of processes are dependent on operating system 
implementation. 

A UNIX process consists minimally of a text segment, a data segment and a stack segment. A 
segment is an area of memory that is managed by the system as a unit. 

 A text segment consists of the program text in machine executable instruction code 
format. 

 The data segment contains static and global variables and their corresponding data. 
 A stack segment contains runtime variables and the return addresses of all active functions 

for a process. 

UNIX kernel has a process table that keeps track of all active process present in the system. Some 
of these processes belongs to the kernel and are called as “system process”. Every entry in the 
process table contains pointers to the text, data and the stack segments and also to U-area of a 
process. U-area of a process is an extension of the process table entry and contains other 
process specific data such as the file descriptor table, current root and working directory inode 
numbers and set of system imposed process limits. 

 

 

All processes in UNIX system expect the process that is created by the system boot code, are 
created by the fork system call. After the fork system call, once the child process is created, both 
the parent and child processes resumes execution. When a process is created by fork, it contains 
duplicated copies of the text, data and stack segments of its parent as shown in the Figure 
below. Also it has a file descriptor table, which contains reference to the same opened files as 
the parent, such that they both share the same file pointer to each opened files. 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 5 

 

 

Figure: Parent & child relationship after fork 

The process will be assigned with attributes, which are either inherited from its parent or will be 
set by the kernel. 

 A real user identification number (rUID): the user ID of a user who created the parent 
process. 

 A real group identification number (rGID): the group ID of a user who created that parent 
process. 

 An effective user identification number (eUID): this allows the process to access and 
create files with the same privileges as the program file owner. 

 An effective group identification number (eGID): this allows the process to access and 
create files with the same privileges as the group to which the program file belongs. 

 Saved set-UID and saved set-GID: these are the assigned eUID and eGID of the process 
respectively. 

 Process group identification number (PGID) and session identification number (SID): 
these identify the process group and session of which the process is member. 

 Supplementary group identification numbers: this is a set of additional group IDs for a 
user who created the process. 

 Current directory: this is the reference (inode number) to a working directory file. 
 Root directory: this is the reference to a root directory. 
 Signal handling: the signal handling settings. 
 Signal mask: a signal mask that specifies which signals are to be blocked. 
 Unmask: a file mode mask that is used in creation of files to specify which accession 

rights should be taken out. 
 Nice value: the process scheduling priority value. 
 Controlling terminal: the controlling terminal of the process. 

In addition to the above attributes, the following attributes are different between the parent 
and child processes: 

 Process identification number (PID): an integer identification number that is unique per 
process in an entire operating system. 

 Parent process identification number (PPID): the parent process PID. 
 Pending signals: the set of signals that are pending delivery to the parent process. 
 Alarm clock time: the process alarm clock time is reset to zero in the child process. 
 File locks: the set of file locks owned by the parent process is not inherited by the chid 

process. 

fork and exec are commonly used together to spawn a sub-process to execute a different 
program. The advantages of this method are: 

 A process can create multiple processes to execute multiple programs concurrently. 
 Because each child process executes in its own virtual address space, the parent process 

is not affected by the execution status of its child process. 
 

 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 6 

 

8Q) Explain about fork () System call? 

 An existing process can create a new one by calling the fork function. 

#include <unistd.h>  

pid_t fork(void); 

Returns: 0 in child, process ID of child in parent, 1 on error. 

 The new process created by fork is called the child process. 

 This function is called once but returns twice. 

 The only difference in the returns is that the return value in the child is 0, whereas the 

return value in the parent is the process ID of the new child. 

 The reason the child's process ID is returned to the parent is that a process can have 

more than one child, and there is no function that allows a process to obtain the 

process IDs of its children. 

 The reason fork returns 0 to the child is that a process can have only a single parent, 

and the child can always call getppid to obtain the process ID of its parent. (Process 

ID 0 is reserved for use by the kernel, so it's not possible for 0 to be the process ID of a 

child.) 

 Both the child and the parent continue executing with the instruction that follows the call 
to fork. 

 The child is a copy of the parent. 

 For example, the child gets a copy of the parent's data space, heap, and stack. 

 Note that this is a copy for the child; the parent and the child do not share these 
portions of memory. 

 The parent and the child share the text segment .

 

9Q) List the reasons for a fork () to fail? 
 The two main reasons for fork to fail are 

(a) if too many processes are already in the system, which usually means that something else is 
wrong, or 

(b) if the total number of processes for this real user ID exceeds the system's limit. 

 

 

10Q) Explain the Uses of a fork? 
 There are two uses for fork: 

 When a process wants to duplicate itself so that the parent and child can each execute 

different sections of code at the same time. This is common for network servers, the 

parent waits for a service request from a client. When the request arrives, the parent 

calls fork and lets the child handle the request. The parent goes back to waiting for the 

next service request to arrive. 

 When a process wants to execute a different program. This is common for shells. In this 

case, the child does an exec right after it returns from the fork. 

11Q) Explain about vfork ()? 

 The function vfork has the same calling sequence and same return values as fork. 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 7 

 

 The vfork function is intended to create a new process when the purpose of the new 

process is to exec a new program. 

 The vfork function creates the new process, just like fork, without copying the 

address space of the parent into the child, as the child won't reference that address 

space; the child simply calls exec (or exit) right after the vfork. 

 Instead, while the child is running and until it calls either exec or exit, the child runs in 

the address space of the parent. This optimization provides an efficiency gain on some 

paged virtual-memory implementations of the UNIX System. 

 Another difference between the two functions is that vfork guarantees that the child 

runs first, until the child calls exec or exit. When the child calls either of these 

functions, the parent resumes. 

12Q)  Explain about wait and waitpid () System calls? 

 When a process terminates, either normally or abnormally, the kernel notifies the parent 

by sending the SIGCHLD signal to the parent. Because the termination of a child is an 

asynchronous event - it can happen at any time while the parent is running - this signal is the 

asynchronous notification from the kernel to the parent. The parent can choose to ignore this 

signal, or it can provide a function that is called when the signal occurs: a signal handler. 

A process that calls wait or waitpid can: 

 Block, if all of its children are still running 

 Return immediately with the termination status of a child, if a child has terminated and 

is waiting for its termination status to be fetched 

 Return immediately with an error, if it doesn't have any child processes. 

#include <sys/wait.h> 

 

pid_t wait(int *statloc); 

 

pid_t waitpid(pid_t pid, int *statloc, int options); 

Both return: process ID if OK, 0 (see 

later), or 1 on error. The differences 

between these two functions are as 

follows. 

       The wait function can block the caller until a child process terminates, whereas waitpid 
has an option that 

prevents it from blocking. 

       The waitpid function doesn't wait for the child that terminates first; it has a number of 

options that control which process it waits for. 

If a child has already terminated and is a zombie, wait returns immediately with that child's 

status. Otherwise, it blocks the caller until a child terminates. If the caller blocks and has multiple 

children, wait returns when one terminates. 

For both functions, the argument statloc is a pointer to an integer. If this argument is not a null 

pointer, the termination status of the terminated process is stored in the location pointed to by 

the argument. 

 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 8 

 

13Q) List the features of waitpid () that aren’t provided by wait ()? 

 The waitpid function provides three features that aren't provided by the wait function 
they are: 
 The waitpid function lets us wait for one particular process, whereas the wait 

function returns the status of any terminated child. We'll return to this feature when 
we discuss the popen function. 

 The waitpid function provides a nonblocking version of wait. There are times when 
we want to fetch a child's status, but we don't want to block. 

 The waitpid function provides support for job control with the WUNTRACED and 
WCONTINUED options. 

14Q) Write about waitid () system call? 

 The waitid function is similar to waitpid, but provides extra flexibility. 
#include <sys/wait.h> 

Int waited(idtype_t idtype, id_t id, siginfo_t *infop, int options); 

Returns: 0 if OK, -1 on error 
 

The idtype constants for waited are as follows: 
Constant Description 
P_PID Wait for a particular process: id contains the process ID of the child to wait for. 
P_PGID Wait for any child process in a particular process group: id contains the process 

group ID of the children to wait for. 
P_ALL Wait for any child process: id is ignored. 

 
 

The options argument is a bitwise OR of the flags as shown below: these flags indicate which 

state changes the caller is interested in. 

Constant Description 
WCONTINUED Wait for a process that has previously stopped and has been continued, and 

whose status has not yet been reported. 
WEXITED Wait for processes that have exited. 
WNOHANG Return immediately instead of blocking if there is no child exit status available. 
WNOWAIT Don't destroy the child exit status. The child's exit status can be retrieved by a 
subsequent call to 

wait, waitid,or waitpid. 
WSTOPPED Wait for a process that has stopped and whose status has not yet been 
reported. 
 

15Q) explain about wait3 () and wait4 () system calls? 

 The only feature provided by these two functions that isn't provided by the wait, waitid, 

and waitpid functions is an additional argument that allows the kernel to return a summary of 

the resources used by the terminated process and all its child processes. 

The prototypes of these functions are: 

#include <sys/types.h> 

#include <sys/wait.h> 

#include <sys/time.h> 

#include <sys/resource.h> 

pid_t wait3(int *statloc, int options, struct rusage *rusage); 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 9 

 

pid_t wait4(pid_t pid, int *statloc, int options, struct rusage *rusage); 

Both return: process ID if OK,-1 on error 

The resource information includes such statistics as the amount of user CPU time, the amount of 

system CPU time, number of page faults, number of signals received etc. the resource 

information is available only for terminated child process not for the process that were stopped 

due to job control. 

16Q) write short notes on exec function family? 

 When a process calls one of the exec functions, that process is completely replaced by 
the new program, and the new program starts executing at its main function. The process ID 
does not change across an exec, because a new process is not created; exec merely replaces 
the current process - its text, data, heap, and stack segments - with a brand new program from 
disk. 
There are 6 exec functions: 

#include <unistd.h> 

int execl(const char *pathname, const char *arg0,... /* 

(char *)0 */ ); int execv(const char *pathname, char 

*const argv []); 

int execle(const char *pathname, const char *arg0,... /*(char *)0, char 

*const envp */ ); 

int execve(const char *pathname, char *const argv[], char 

*const envp[]); int execlp(const char *filename, const 

char *arg0, ... /* (char *)0 */ ); int execvp(const char 

*filename, char *const argv []); 

All six return: -1 on error, no return on success. 

 The first difference in these functions is that the first four take a pathname argument, 
whereas the last two take a filename argument. When a filename argument is specified 

 If filename contains a slash, it is taken as a pathname. 

 Otherwise, the executable file is searched for in the directories specified by the PATH 
environment variable. 

 The next difference concerns the passing of the argument list (l stands for list and v 
stands for vector). The functions execl, execlp, and execle require each of the 
command-line arguments to the new program to be specified as separate arguments. 
For the other three functions (execv, execvp, and execve), we have to build an array 
of pointers to the arguments, and the address of this array is the argument to these 
three functions. 

 The final difference is the passing of the environment list to the new program. The two 
functions whose names end in an e (execle and execve) allow us to pass a pointer to 
an array of pointers to the environment strings. The other four functions, however, use 
the environ variable in the calling process to copy the existing environment for the 
new program. 

 

 

 

 

 

 

 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 10 

 

 

Function pathname filename Arg list argv[] environ envp[] 
execl •  •  •  
execlp  • •  •  
execle •  •   • 
execv •   • •  
execvp  •  • •  
execve •   •  • 

(letter in name)  p l v  e 

The above table shows the differences among the 6 exec functions. 
 
 
 
17Q) Describe how to change userids and group ids in Linux Environment? 
 

 When our programs need additional privileges or need to gain access to resources that 
they currently aren't allowed to access, they need to change their user or group ID to an ID that 
has the appropriate privilege or access. Similarly, when our programs need to lower their 
privileges or prevent access to certain resources, they do so by changing either their user ID or 
group ID to an ID without the privilege or ability access to the resource. 
#include <unistd.h> 

 

int setuid(uid_t uid); 

int setgid(gid_t gid); 

Both return: 0 if OK, 1 on error 

There are rules for who can change the IDs. Let's consider only the user ID for now. (Everything 
we describe for the user ID also applies to the group ID.) 

       If the process has superuser privileges, the setuid function sets the real user ID, 
effective user ID, and saved set-user-ID to uid. 

       If the process does not have superuser privileges, but uid equals either the real user ID or 
the saved set-user- ID, setuid sets only the effective user ID to uid. The real user ID and 
the saved set-user-ID are not changed. 

       If neither of these two conditions is true, errno is set to EPERM, and 1 is returned. 
 

We can make a few statements about the three user IDs that the kernel maintains. 

 Only a superuser process can change the real user ID. Normally, the real user ID is set 
by the login(1) program when we log in and never changes. Because login is a 
superuser process, it sets all three user IDs when it calls setuid. 

 The effective user ID is set by the exec functions only if the set-user-ID bit is set for 
the program file. If the set-user-ID bit is not set, the exec functions leave the effective 
user ID as its current value. We can call setuid at any time to set the effective user ID 
to either the real user ID or the saved set-user-ID. Naturally, we can't set the effective 
user ID to any random value. 

 The saved set-user-ID is copied from the effective user ID by exec. If the file's set-user-
ID bit is set, this copy is saved after exec stores the effective user ID from the file's user 
ID. 

 
 
 
 
 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 11 

 

 
 

ID exec setuid(uid) 

set-user-ID bit off set-user-ID bit on superuser unprivileged 

 

    user 

real user ID unchanged unchanged set to uid unchanged 

effective 

user ID 

unchanged set from user ID of program 

file 

set to uid set to uid 

saved 

set-user 

ID 

copied from effective user 

ID 

copied from effective user ID set to uid unchanged 

 
The above figure summarizes the various ways these three user IDs can be changed 

 

18Q) Explain about process Session? 

 A session is a collection of one or more process groups. For example, we could have the 
arrangement shown in Figure Here we have three process groups in a single session. 

 

Arrangement of processes into process groups and sessions 

 

 

A process establishes a new session by calling the setsid function. 

 

 

Returns: process group ID if OK, 1 on error 

If the calling process is not a process group leader, this function creates a new session. Three 
things happen. 

 The process becomes the session leader of this new session. (A session leader is the 
process that creates a session.) The process is the only process in this new session.

 The process becomes the process group leader of a new process group. The new 
process group ID is the process ID of the calling process.

 The process has no controlling terminal. If the process had a controlling terminal before 
calling setsid, that association is broken.

 
This function returns an error if the caller is already a process group leader. The getsid 
function returns the process group ID of a process's session leader. The getsid function is 
included as an XSI extension in the Single UNIX Specification. 
#include <unistd.h> 

#include <unistd.h> 

 
pid_t setsid(void); 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 12 

 

 

pid_t getsid(pid_t pid); 

Returns: session leader's process group ID if OK, 1 on error 

If pid is 0, getsid returns the process group ID of the calling process's session leader. 
 

19Q) Explain about Process Control Terminal? 

 Sessions and process groups have a few other characteristics. 

 A session can have a single controlling terminal. This is usually the terminal device (in 
the case of a terminal login) or pseudo-terminal device (in the case of a network login) 
on which we log in. 

 The session leader that establishes the connection to the controlling terminal is called 
the controlling process. 

 The process groups within a session can be divided into a single foreground process 
group and one or more background process groups. 

 If a session has a controlling terminal, it has a single foreground process group, and all 
other process groups in the session are background process groups. 

 Whenever we type the terminal's interrupt key (often DELETE or Control-C), this causes 
the interrupt signal be sent to all processes in the foreground process group. 

 Whenever we type the terminal's quit key (often Control-backslash), this causes the 
quit signal to be sent to all processes in the foreground process group. 

 If a modem (or network) disconnect is detected by the terminal interface, the hang-up 
signal is sent to the controlling process (the session leader). 

These characteristics are shown in Figure below 

Process groups and sessions showing controlling terminal 

 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 13 

 

20Q)  Define a signal? List the different types of signals /description /and when they get triggered 
in Linux Environment? 

  

 Signals are software interrupts. Signals provide a way of handling asynchronous events: a 

user at a terminal typing the interrupt key to stop a program or the next program in a pipeline 

terminating prematurely. 

Different signals: 

 

Name Description Default action 

SIGABRT abnormal termination (abort) terminate+core 

SIGALRM timer expired (alarm) terminate 

SIGBUS hardware fault terminate+core 

SIGCANCEL threads library internal use ignore 

SIGCHLD change in status of child ignore 

SIGCONT continue stopped process continue/ignore 

SIGEMT hardware fault terminate+core 

SIGFPE arithmetic exception terminate+core 

SIGFREEZE checkpoint freeze ignore 

SIGHUP hangup terminate 

SIGILL illegal instruction terminate+core 

SIGINFO status request from keyboard ignore 

SIGINT terminal interrupt character terminate 

SIGIO asynchronous I/O terminate/ignore 

SIGIOT hardware fault terminate+core 

SIGKILL termination terminate 

SIGLWP threads library internal use ignore 

SIGPIPE write to pipe with no readers terminate 

SIGPOLL pollable event (poll) terminate 

SIGPROF profiling time alarm (setitimer) terminate 

SIGPWR power fail/restart terminate/ignore 

SIGQUIT terminal quit character terminate+core 

SIGSEGV invalid memory reference terminate+core 

SIGSTKFLT coprocessor stack fault terminate 

SIGSTOP stop stop process 

SIGSYS invalid system call terminate+core 

SIGTERM termination terminate 

SIGTHAW checkpoint thaw ignore 

SIGTRAP hardware fault terminate+core 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 14 

 

SIGTSTP terminal stop character stop process 

SIGTTIN background read from control tty stop process 

 
SIGTTOU background write to control tty stop process 

SIGURG urgent condition (sockets) ignore 

SIGUSR1 user-defined signal terminate 

SIGUSR2 user-defined signal terminate 

SIGVTALRM virtual time alarm (setitimer) terminate 

SIGWAITING threads library internal use ignore 

SIGWINCH terminal window size change ignore 

SIGXCPU CPU limit exceeded (setrlimit) terminate+core/ignore 

SIGXFSZ file size limit exceeded (setrlimit) terminate+core/ignore 

SIGXRES resource control exceeded Ignore 

 

When a signal is sent to a process, it is pending on the process to handle it. The process can 

react to pending signals in one of three ways: 

       Accept the default action of the signal, which for most signals will terminate the process. 

       Ignore the signal. The signal will be discarded and it has no effect whatsoever on the 
recipient process. 

       Invoke a user-defined function. The function is known as a signal handler routine and the 
signal is said to be caught when this function is called. 

 

21 Q) Explain the Kernel support of signals? 

 When a signal is generated for a process, the kernel will set the corresponding signal 
flag in the process table slot of the recipient process.

 If the recipient process is asleep, the kernel will awaken the process by scheduling it.
 When the recipient process runs, the kernel will check the process U-area that 

contains an array of signal handling specifications.
 If array entry contains a zero value, the process will accept the default action of the 

signal.

 If array entry contains a 1 value, the process will ignore the signal and kernel will 
discard it.

 If array entry contains any other value, it is used as the function pointer for a user-
defined signal handler routine.

 

 

 

 

 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 15 

 

22 Q) Explain about signal () system call? 

 The function prototype of the signal API is: #include <signal.h> 

void (*signal(int sig_no, void (*handler)(int)))(int); 

The formal argument of the API are: sig_no is a signal identifier like SIGINT or SIGTERM. The 

handler argument is the function pointer of a user-defined signal handler function. 

The following example attempts to catch the SIGTERM signal, ignores the SIGINT signal, and 

accepts the default action of the SIGSEGV signal. The pause API suspends the calling process until 

it is interrupted by a signal and the corresponding signal handler does a return: 

#include<iostream.h> 

#include<signal.h> 

/*signal 

handler 

function*/ 

void 

catch_sig(in

t sig_num) 

{ 

signal (sig_num,catch_sig); 

cout<<”catch_sig:”<<sig_num<<endl; 

} 

 

 

/*main function*/ int 

main() 

{ 

signal(SIGTERM,catch_s

ig); 

signal(SIGINT,SIG_IGN

); 

signal(SIGSEGV,SIG_DF

L); 

pause( ); /*wait for a signal interruption*/ 

} 

The SIG_IGN specifies a signal is to be ignored, which means that if the signal is generated to the 

process, it will be discarded without any interruption of the process.The SIG_DFL specifies to 

accept the default action of a signal. 

 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 16 

 

23 Q) Explain about the Signal Mask? 

 A process initially inherits the parent’s signal mask when it is created, but any pending 

signals for the parent process are not passed on. A process may query or set its signal mask via 

the sigprocmask API: 

#include <signal.h> 

int sigprocmask(int cmd, const sigset_t *new_mask, sigset_t *old_mask); 

 

 

Returns: 0 if OK, 1 on error 

The new_mask argument defines a set of signals to be set or reset in a calling process signal 

mask, and the cmd argument specifies how the new_mask value is to be used by the API. The 

possible values of cmd and the corresponding use of the new_mask value are: 

Cmd value Meaning 

SIG_SETMASK    Overrides the calling process signal mask with the value specified in the 
new_mask argument. 

SIG_BLOCK          Adds the signals specified in the new_mask argument to the calling process signal 
mask. 

SIG_UNBLOCK    Removes the signals specified in the new_mask argument from the calling process  
signal mask. 

 If the actual argument to new_mask argument is a NULL pointer, the cmd argument will 
be ignored, and the current process signal mask will not be altered. 

 If the actual argument to old_mask is a NULL pointer, no previous signal mask will be 
returned. 

 The sigset_t contains a collection of bit flags. 

 
The BSD UNIX and POSIX.1 define a set of API known as sigsetops functions: 

#include<signal.h> 

 

 

int sigemptyset (sigset_t* sigmask); 

int sigaddset(sigset_t* sigmask, const int sig_num); 

 int sigdelset(sigset_t* sigmask, const 

int sig_num); 

int sigfillset(sigset_t* sigmask); 

  

int sigismember (const sigset_t* sigmask, const int sig_num); 

 

The sigemptyset API clears all signal flags in the sigmask argument. 
       The sigaddset API sets the flag corresponding to the signal_num signal in the 

sigmask argument.        The sigdelset API clears the flag corresponding to the 
signal_num signal in the sigmask argument.        The sigfillset API sets all the 
signal flags in the sigmask argument. 

[ all the above functions return 0 if OK, -1 on error ] 

       The sigismember API returns 1 if flag is set, 0 if not set and -1 if the call fails. 

 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 17 

 

The following example checks whether the SIGINT signal is present in a process signal mask and 

adds it to the mask if it is not there. 

#include<stdio.h> 

#include<signal.h> int main() 

{ 

sigset_t sigmask; 

sigemptyset(&sigmask); /*initialise set*/ 

 

 

if(sigprocmask(0,0,&sigmask)==-1) /*get current signal mask*/ 

{ 

perror(“sigprocmask”); exit(1); 

} 

else sigaddset(&sigmask,SIGINT); /*set SIGINT flag*/ 

 
 

sigdelset(&sigmask, SIGSEGV);

 /*cle

ar SIGSEGV flag*/ 

if(sigprocmask(SIG_SETMASK,&sigmask,0)==-1) 

perror(“sigprocmask”); 

} 

 

 

A process can query which signals are pending for it via the sigpending API: 

#include<signal.h> 

int sigpending(sigset_t* sigmask); 

Returns 0 if OK, -1 if fails. 

The sigpending API can be useful to find out whether one or more signals are pending for a 

process and to set up special signal handling methods for these signals before the process calls 

the sigprocmask API to unblock them. 

The following example reports to the console whether the SIGTERM signal is pending for the 
process: 

#include<iostream.h> 

#include<stdio.h> 

#include<signal.h> int main() 

{ 

sigset_t  



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 18 

 

sigmask; sigemptyset(&igmask); 

if(sigpending(&sigmask)==-1) 

perror(“sigpending”); 

else cout << “SIGTERM signal is:” 

<< (sigismember(&sigmask,SIGTERM) ? “Set” : “No Set”) << 

endl; 

} 

In addition to the above, UNIX also supports following APIs for signal mask manipulation: 

 

24 Q) Explain About SIGACTION API? 

  The sigaction API blocks the signal it is catching allowing a process to specify additional 

signals to be blocked when the API is handling a signal. 

The sigaction API prototype is: 

#include<signal.h> 

int sigaction(int signal_num, struct sigaction* action, struct 

sigaction* old_action); 

Returns: 0 if OK, 1 on error 

The struct sigaction data type is defined in the <signal.h> header as: 

struct sigaction 

{ 

void (*sa_handler)(int); 

sigset_t sa_mask; 

int sa_flag; 

} 

The following program illustrates the uses of sigaction: 

#include<iostream.h> 

#include<stdio.h> 

#include<unistd.h> 

#include<signal.h> 

 

 

void callme(int sig_num) 

#include<signal.h> 

 
 

int sighold(int signal_num); 

int sigrelse(int signal_num); 

int sigignore(int signal_num); 

int sigpause(int signal_num); 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 19 

 

{ 

cout<<”catch signal:”<<sig_num<<endl; 

} 

int main(int argc, char* argv[]) 

{ 

sigset_t sigmask; 

struct sigaction 

action,old_action

; 

sigemptyset(&sigm

ask); 

if(sigaddset(&sigmask,SIGTERM)==-1 || 

sigprocmask(SIG_SETMASK,&sigmask,0)==-1) perror(“set 

signal mask”); 

sigemptyset(&actio

n.sa_mask); 

sigaddset(&action.

sa_mask,SIGSEGV); 

action.sa_handler=

callme; 

action.sa_flags=0; 

if(sigaction(SIGINT,&action,

&old_action)==-1) 

perror(“sigaction”); 

pause(); cout<<argv[0]<<”exists\n”; return 0; 

} 

25Q)  Explain about Kill () system call?  

 A process can send a signal to a related process via the kill API. This is a simple means of 

inter-process communication or control. The function prototype of the API is: 

#include<signal.h> 

int kill(pid_t pid, int signal_num); 

Returns: 0 on success, -1 on failure. 

The signal_num argument is the integer value of a signal to be sent to one or more processes 

designated by pid. The possible values of pid and its use by the kill API are: 

 

pid > 0 The signal is sent to the process whose process ID is pid. 



LINUX PROGRAMMING (STEP MATERIAL) IV YEAR 

 

DEPARTMENT OF CSE                                    CMR ENGINEERING COLLEGE                                 Page 20 

 

pid == 0 The signal is sent to all processes whose process group ID equals the process group 
ID of the sender and for which the sender has permission to send the signal. 

pid < 0  The signal is sent to all processes whose process group ID equals the absolute value 
of pid and for which the sender has permission to send the signal. 

pid == 1 The signal is sent to all processes on the system for which the sender has 
permission to send the signal. 

 
26Q) write about alarm () system call? 

  The alarm API can be called by a process to request the kernel to send the 

SIGALRM signal after a certain number of real clock seconds. The function prototype of the API 

is: 

#include<signal.h> 

Unsigned int alarm(unsigned int time_interval); 

Returns: 0 or number of seconds until 

previously set alarm The alarm API can 

be used to implement the sleep API: 

27Q)  Explain about a Daemon Process and its characteristics? 

  Daemons are processes that live for a long time. They are often started when the 

system is bootstrapped and terminate only when the system is shut down. 

DAEMON CHARACTERISTICS 

The characteristics of daemons are: 

 Daemons run in background. 
 Daemons have super-user privilege. 
 Daemons don’t have controlling terminal. 
 Daemons are session and group leaders. 

 
28Q) Explain about Zombie Process? 
  Zombie process. On UNIX and Unix-like computer operating systems, a zombie process or 

defunct process is a process that has completed execution (via the exit system call) but still has 
an entry in the process table: it is a process in the "Terminated state". 

29 Q) Explain about Orphan Process? 
  An orphan process is a computer process whose parent process has finished or terminated, 

though it remains running itself. In a Unix-like operating system any orphaned process will be 
immediately adopted by the special init system process. 

**30 Q) Distinguish Zombie and Orphan Processes?**  


