[image:]
 CMR ENGINEERING COLLEGE
 Kandlakoya (V), Medchal (M), R.R.Dist.
 Department Of Computer Science and Engineering

 Subject - DISTRIBUTED SYSTEMS
 Step Material

 UNIT-1
1.Define distributed systems
Distributed systems refer to networks of multiple independent computers or nodes that work together to achieve a common goal. These systems involve components spread across different locations, connected through a communication network, and typically cooperate to perform a task or provide a service. They allow for data sharing, computation, and resource sharing among interconnected nodes, enabling scalability, fault tolerance, and improved performance in various applications, such as cloud computing, peer-to-peer networks, and distributed databases.
2.Give examples of distributed systems
World Wide Web (WWW): The internet itself is a distributed system, connecting numerous servers, clients, and other devices across the globe.
Cloud Computing Platforms: Services like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform use distributed systems to provide scalable and reliable computing resources.
Distributed Databases: Systems like Apache Cassandra, MongoDB, and Google's Spanner distribute data across multiple nodes for storage and retrieval.
Peer-to-Peer (P2P) Networks: Applications such as BitTorrent, which share files directly between users without a centralized server, are examples of distributed systems.
3.Write the following (i) HTTP (ii) HTML (iii) URL
HTTP (Hypertext Transfer Protocol): HTTP is a protocol used for transmitting hypermedia documents, such as HTML. It's the foundation of data communication on the World Wide Web. HTTP defines how messages are formatted and transmitted, as well as how web servers and browsers should respond to various commands.
(ii) HTML (Hypertext Markup Language): HTML is the standard markup language used for creating web pages and displaying content on the internet. It consists of various elements, tags, and attributes that structure the content and define its presentation. Browsers interpret HTML to render text, images, links, and other multimedia elements on webpages.
(iii) URL (Uniform Resource Locator): A URL is a web address that specifies the location of a resource on the internet. It consists of various components, including the protocol (such as HTTP or HTTPS), the domain name or IP address, and the path to the specific resource. URLs are used by browsers to access web pages, files, images, and other online content.
4.Define heterogeneity
Heterogeneity refers to the state or quality of being diverse, varied, or composed of different elements. In computing or technology, it often refers to systems, networks, or environments that encompass a range of diverse components, platforms, languages, protocols, or data formats.
5.Define scalability
Scalability refers to the capability of a system, process, or application to handle a growing amount of work, resources, or users while maintaining or improving performance. It involves the ability to efficiently and effectively accommodate increased demands without compromising functionality or performance.
6.Define System model
A system model is a conceptual representation or an abstract view of a system, used to understand, describe, analyze, and predict the behavior and characteristics of the system being studied. It provides a structured way to comprehend the components, interactions, and functions within a system.
7.Why we need openness
Openness plays a vital role in various aspects of society, technology, and governance for several reasons:
Innovation: Openness fosters innovation by enabling collaboration, sharing of ideas, knowledge, and resources among a broader community. Open platforms and standards encourage creativity and the development of new solutions.
Interoperability: Openness promotes interoperability between different systems, software, and devices. Open standards and protocols facilitate the integration of diverse technologies, improving compatibility and user experience.
8.What is the architectural model
An architectural model refers to the conceptual design or blueprint that outlines the structure, components, relationships, and interactions within a system or application. It serves as a high-level representation that guides the development, implementation, and understanding of complex systems.
9.Define Middleware
Middleware is software that acts as a bridge or intermediary between different applications, systems, or components, facilitating communication, data management, and interaction between them. It serves as a layer that abstracts the complexities of underlying hardware and software, enabling disparate systems to work together seamlessly.
10.Define latency.
Latency refers to the delay or the amount of time it takes for a piece of data to travel from its source to its destination within a system. It represents the time gap between initiating a request and receiving a response.
There are different types of latency:
Network Latency: This is the time it takes for data to travel from one point to another across a network. It includes factors like the physical distance between devices, the quality of the network infrastructure, and any congestion or traffic along the route.
Processing Latency: Refers to the time taken by a system to process incoming data or requests. It includes time spent by hardware, software, or both, in performing computations, executing instructions, or handling tasks.
11.Define mobile IP.
Mobile IP (Internet Protocol) is a protocol that enables mobile devices to maintain continuous network connectivity while moving between different networks. It allows devices, such as smartphones, laptops, or tablets, to change their network attachment point without losing their ongoing connections.
12.What is meant by networking
Networking refers to the practice of connecting various devices, systems, or entities to enable communication, data sharing, and resource sharing between them. It involves the establishment of connections and the exchange of information between nodes, allowing them to interact and collaborate effectively
13.What is meant by internetworking
Internetworking refers to the practice of connecting multiple different networks or network segments to create a larger, interconnected network. It involves the use of various hardware devices, software protocols, and technologies to enable communication and data exchange between disparate networks.

UNIT – II

1.Define Thread.
In computing, a thread refers to the smallest unit of execution within a process. Threads are sequences of instructions that can be scheduled and executed independently by a computer's CPU. They exist within a process and share resources such as memory, but each thread has its own execution path

2.What is meant by address space
Address space refers to the range of memory addresses that a computing system or a process can access. It represents the total amount of memory locations available for storing data and instructions within a specific range of addresses.

3.What is meant by distributed file system
A distributed file system (DFS) is a type of file system that enables files and resources to be stored across multiple networked servers or nodes, providing access and management of files in a distributed and transparent manner. It allows users and applications to access files and data as if they were stored on a single, centralized file system, even though the files may be physically distributed across different locations or servers.

4.What is meant by invocation performance
Invocation performance typically refers to the speed and efficiency with which a function or method can be called or invoked within a software system or application. It measures the time it takes to initiate and execute a function, including any necessary setup, processing, and return of results.

5.What are core OS Components
The core components of an operating system (OS) form the fundamental building blocks that manage and facilitate the interaction between hardware and software, enabling the computer to function. These components include:
1. Kernel: The kernel is the central component of an OS. It manages system resources, such as CPU, memory, I/O devices, and implements essential functionalities like process scheduling, memory management, file system, and device drivers.
2. File System: It provides the structure and organization for storing and retrieving files on storage devices. It manages directories, files, permissions, and access methods, ensuring data persistence and organization

6.What is a multithread
A multithreaded process is a unit of execution that consists of multiple threads running within a single process. Threads are the smallest sequence of programmed instructions that can be independently scheduled and executed by the operating system's scheduler.

7.Describe operating system layer
The operating system (OS) consists of various layers that provide abstraction, management, and interaction between hardware and software components. These layers collectively facilitate the functioning and usability of a computer system. Here's an overview of the typical layers within an operating system:
1. Hardware Layer:
· This layer interacts directly with the physical hardware components of the computer, including the CPU, memory, storage devices, input/output devices (such as keyboard, mouse, and display), and network interfaces.
2. Kernel Layer:
· The kernel is the core component of the operating system, residing in memory. It provides essential services, manages system resources, and facilitates interactions between hardware and software layers.
· It includes components like process management, memory management, device drivers, scheduling, and I/O management.
3. System Call Interface Layer:
· This layer acts as an interface between the kernel and user-level programs. It provides an API (Application Programming Interface) for user programs to access OS services.
· User programs use system calls to request OS services like file operations, process creation, network communication, etc.
4. Service Layer:
· This layer comprises various services and utilities provided by the operating system to assist users and applications.
· It includes file systems, networking services, security mechanisms, graphical user interfaces (GUIs), and other utilities like command-line interfaces (CLI) or system administration tools.
5. User Interface Layer:
· This is the topmost layer visible to users, providing an interface for human interaction with the system.
· It includes different types of user interfaces like graphical user interfaces (GUIs), command-line interfaces (CLIs), and application programming interfaces (APIs) used by software developers.
8.Explain the requirements of distributed systems
Concurrency: Distributed systems handle multiple tasks or processes simultaneously, requiring mechanisms to manage concurrent access to shared resources while maintaining data consistency.
Scalability: Systems should handle increased workload or growing user base without sacrificing performance. Scalability involves adding resources or nodes to maintain responsiveness.
Reliability and Fault Tolerance: Distributed systems must remain operational despite component failures, network issues, or unexpected behavior. Robust fault tolerance mechanisms ensure continued operation and data integrity.
Consistency: Ensuring that all nodes in the system have consistent and up-to-date information despite decentralized data storage and concurrent updates is crucial for maintaining correctness.
Transparency: Providing users and applications with a unified view of the system regardless of its distributed nature. Transparency includes access, location, and migration of resources.
Performance: Optimizing system performance to deliver efficient responses, minimize latency, and handle varying workloads effectively.
Security: Ensuring secure communication, data privacy, and protection against unauthorized access or malicious attacks across distributed nodes.
Resource Sharing and Allocation: Managing and allocating resources efficiently among distributed nodes to avoid resource contention and maximize utilization.
Heterogeneity Support: Accommodating diverse hardware, software, and network configurations across distributed nodes without compromising interoperability.
Scalable Communication: Reliable and efficient communication mechanisms to support message passing, data exchange, and synchronization among distributed components.
Adaptability and Dynamic Changes: Systems should adapt to changing conditions, such as node additions or failures, network topology changes, or varying workloads

9.Explain Processes and threads
Processes and threads are fundamental concepts in computer science that deal with the execution of tasks within a computer system.
Processes:
Definition:
A process can be thought of as an instance of a running program. It's an independent entity within a system that executes a specific task.
Each process has its own memory space, containing program instructions, data, stack, and resources like open files and system handles.
Processes are managed by the operating system (OS) and are isolated from each other, ensuring data integrity and security.
Characteristics:
Isolation: Processes are independent and do not share memory, ensuring one process doesn't interfere with another.
Resource Allocation: Each process has its own allocated system resources, like CPU time, memory, and I/O devices.
Creation and Termination: Processes can create other processes (child processes) and terminate when they complete their tasks or are explicitly ended.
Example:
When you open a text editor, a process for that editor is created. If you open multiple instances of the editor, each instance becomes a separate process.
Threads:
Definition:
A thread is a unit of execution within a process. It represents a single sequence of instructions that can be executed independently.
Threads within the same process share memory and resources, including code, data, and files, but each has its own stack and register state.
Multiple threads within a process can perform tasks concurrently, enhancing the application's responsiveness and efficiency.
Characteristics:
Concurrency: Threads within a process can execute simultaneously, allowing for multitasking and parallelism.
Shared Memory: Threads within the same process share the same memory space, making data sharing and communication between threads more efficient.
Lightweight: Threads are lighter in terms of creation and context-switching overhead compared to processes, as they share resources.
Example:
In a web browser, a process might contain multiple threads: one handling user interface interactions, another fetching data from the internet, and another rendering the webpage.
Relationship between Processes and Threads:
A process can have multiple threads. Threads within the same process share the same memory and resources, enabling efficient communication and data sharing.
Processes provide greater isolation and security but have higher overhead in terms of resource consumption. Threads, being lighter, allow for efficient multitasking within a process.
Threads within a process can communicate with each other more directly and quickly than processes, as they share the same memory space.

10.Describe Operating system architecture
Components of Operating System Architecture:
1. Kernel:
Core Component: The kernel is the central component of the OS, managing system resources, handling hardware interactions, and providing essential services.
Memory Management: Allocates and deallocates memory for processes and manages virtual memory.
Process and Task Management: Controls processes, scheduling their execution, and ensuring fair access to CPU time.
Device Drivers: Interacts with hardware devices through device drivers, enabling communication between the hardware and software layers.
File System Management: Handles file operations, such as creation, deletion, and access, organizing data on storage devices.
2. System Libraries:
Additional Functionality: Libraries provide additional functionalities and services to applications and user-level processes.
API (Application Programming Interface): Offer standardized interfaces that allow applications to interact with the underlying hardware and kernel.
3. System Calls:
Interface to Kernel: System calls are functions provided by the kernel that applications use to request services from the OS, such as file operations, process control, and memory allocation.
4. User Interface:
Interaction Point: Represents the layer through which users interact with the system. It can be a command-line interface (CLI), graphical user interface (GUI), or other forms of user interaction.
5. Security Subsystem:
Access Control: Enforces security policies, manages user permissions, and protects the system from unauthorized access or malicious software.
6. Networking and Communication:
Network Protocols: Facilitates communication between devices and enables network connectivity, allowing data exchange between systems.
Types of OS Architectures:
1. Monolithic Architecture:
Single Unit: The entire operating system is a single, large program running in kernel mode.
Tightly Coupled: Components like device drivers, file systems, and scheduling are all part of the kernel.
2. Microkernel Architecture:
Modular Design: The kernel is minimal, with essential functions like memory management and IPC (Inter-Process Communication).
Services in User Space: Additional functionalities, such as device drivers and file systems, run in user space as separate processes.
3. Hybrid Architecture:
Combination Approach: Combines elements of both monolithic and microkernel designs.

UNIT – III
1.What is the Name Spaces
In computing, a namespace refers to a system that organizes various entities, such as objects, variables, functions, files, or resources, into groups to avoid naming conflicts and provide a hierarchical structure for identification and reference.
Key points about namespaces:
Avoiding Naming Collisions: Namespaces prevent naming conflicts by allowing entities with identical names to coexist within different namespaces without interfering with each other.
Hierarchical Structure: Namespaces often follow a hierarchical or nested structure, allowing for the creation of sub-namespaces within larger namespaces, providing better organization and categorization of entities.
2.Define global State
Global state refers to the collective data or information that is accessible and shared across multiple parts or components of a system or application. It represents the set of variables, properties, or values that are available universally and can be accessed or modified from different parts of the program.
Key characteristics of global state include:
Accessibility: Global state can be accessed from any part of the program without specific constraints or limitations, allowing different modules, functions, or components to read or modify its values.
Shared Data: It represents a shared pool of data that is not encapsulated within a specific scope or context, potentially leading to issues with data integrity, concurrency, and dependencies.
3.What is the election algorithm
Election algorithms are used in distributed systems to select a leader or coordinator among a group of nodes or processes. The primary purpose of an election algorithm is to establish a single node as the leader or coordinator responsible for making decisions, coordinating actions, or managing the distributed system.
Key characteristics of election algorithms include:
Leader Selection: The algorithm determines a criteria or set of rules for nodes to elect a leader. This leader might be the node with the highest priority, the lowest identifier, or based on certain conditions specified by the algorithm.
Fault Tolerance: Election algorithms often incorporate mechanisms to handle failures or network partitions. They ensure that in case the current leader fails or becomes disconnected, a new leader can be elected to maintain the system's operation.
Communication and Coordination: Nodes within the system communicate with each other to participate in the election process. This involves exchanging messages, verifying the state of other nodes, and collectively deciding on the new leader.
4.What is the Berkeley algorithm
The Berkeley algorithm is a time synchronization algorithm used in distributed systems to coordinate the clocks of multiple computers within a network. Developed at the University of California, Berkeley, this algorithm aims to ensure that the clocks across different machines in a distributed environment are reasonably synchronized.
Key principles of the Berkeley algorithm:
Time Synchronization: The algorithm synchronizes the clocks of various machines by adjusting their local time to a centralized time source or by reaching a consensus among the participating machines.
Coordinator Node: The algorithm designates a coordinator or master node responsible for collecting time information from other nodes, computing an average time, and distributing the corrected time back to the nodes.
Time Adjustment: Nodes in the system periodically send their local time to the coordinator. The coordinator calculates the differences in time among the nodes and computes an average time. This average time is then sent back to the nodes, and each node adjusts its clock accordingly.
Handling Clock Drift: Clocks in different machines may have different rates of time drift due to various factors. The algorithm attempts to minimize the effects of clock drift by periodically resynchronizing the clocks.
5.what is multicast communication
Multicast communication is a network communication method where data is sent from one sender to multiple recipients or receivers simultaneously, allowing efficient one-to-many or many-to-many communication. In contrast to unicast (one-to-one) communication, where data is sent to a specific recipient, and broadcast (one-to-all) communication, where data is sent to all recipients in a network, multicast is more targeted and selective
6.what is meant by distributed debugging
Distributed debugging refers to the process of identifying, diagnosing, and resolving issues or bugs within a distributed system where multiple interconnected components or nodes are involved. It involves troubleshooting problems that occur across different machines, processes, or nodes within a distributed environment.
Key aspects of distributed debugging:
Complexity: Debugging in distributed systems is challenging due to the complexity arising from multiple nodes, interactions, and dependencies. Identifying the root cause of an issue often involves tracing the flow of data or communication across various components.
Isolation and Reproduction: Isolating and reproducing bugs in distributed systems can be complex as issues may arise due to timing, concurrency, or specific interactions between nodes. Reproducing bugs across distributed environments may require meticulous setup and testing.
Monitoring and Logging: Distributed debugging relies heavily on monitoring tools, logging mechanisms, and instrumentation within the system. Collecting and analyzing logs, metrics, and traces from multiple nodes is essential for identifying issues and understanding system behavior.
Distributed Tracing: Techniques like distributed tracing help track and visualize the flow of requests or transactions across different components, aiding in identifying bottlenecks, latency issues, or failures.
Collaboration: Collaboration among multiple teams or individuals is often necessary in distributed debugging, as different parts of the system may be managed by separate teams. Effective communication and sharing of information are crucial.
Testing and Simulations: Emulation or simulation of distributed environments can aid in testing and reproducing scenarios that might lead to bugs, allowing for more controlled debugging processes.

[bookmark: unit_3.pdf]

UNIT – IV

1.Define transaction

In computing and database systems, a transaction refers to a unit of work or a sequence of operations that must be executed as a single, indivisible unit. Transactions ensure that a series of actions or database operations are completed in a consistent and reliable manner, either entirely or not at all, following the principles of ACID (Atomicity, Consistency, Isolation, Durability).
Key characteristics of a transaction include:
1. Atomicity: Transactions are atomic, meaning they are all-or-nothing operations. Either all the actions within a transaction are executed successfully, and the changes are committed, or none of the actions are performed, and the system remains unchanged.
2. Consistency: Transactions maintain the consistency of the database or the system. The database transitions from one consistent state to another consistent state after a successful transaction, ensuring integrity and validity.
3. Isolation: Transactions operate independently of each other. The changes made within one transaction are isolated from other transactions until the changes are committed, preventing interference or concurrency issues.
4. Durability: Once a transaction is committed and completed successfully, the changes made by that transaction become permanent and are persisted in the system, even in the event of system failures or crashes.
Transactions are crucial in maintaining data integrity, ensuring reliability, and supporting concurrent access to databases or shared resources in multi-user environments. They provide a reliable way to manage complex operations by guaranteeing that data modifications occur reliably and consistently, even in the presence of failures or concurrent access.

2.Define ACID properties

The ACID properties, in the context of database systems, represent a set of four key principles that guarantee the reliability, consistency, and integrity of transactions. These properties ensure that database transactions are processed accurately and reliably, maintaining data integrity despite system failures or concurrent operations.
1. Atomicity: Atomicity refers to the "all-or-nothing" principle in transactions. A transaction is treated as a single unit of work, and either all its operations are executed successfully, or none of them are. If any part of the transaction fails, the entire transaction is rolled back, ensuring that the database remains unchanged.
2. Consistency: Consistency ensures that the database remains in a valid state before and after a transaction. It maintains the integrity of data and constraints, such as referential integrity or entity integrity, preventing any transaction from leaving the database in an inconsistent state.
3. Isolation: Isolation ensures that concurrent transactions do not interfere with each other when accessing or modifying data. Each transaction operates independently and as if it were the only transaction running, preventing problems like dirty reads, non-repeatable reads, or phantom reads.
4. Durability: Durability guarantees that once a transaction is committed and completed successfully, its changes are permanently stored in the database, even in the face of system failures or crashes. The changes made by committed transactions persist and are not lost.
The ACID properties collectively provide a framework for ensuring the reliability, correctness, and robustness of database transactions, which is crucial for maintaining data integrity and consistency in various applications and systems.

3.Top of Form
Define Concurrency control.

Concurrency control is a fundamental concept in database systems and distributed computing that manages the simultaneous execution of multiple transactions to ensure their correctness and consistency in a multi-user or multi-process environment.
Key aspects of concurrency control include:
1. Isolation of Transactions: Concurrency control ensures that multiple transactions executing concurrently do not interfere with each other, preserving the integrity of data and preventing issues like dirty reads, non-repeatable reads, or phantom reads.
2. Serializability: It guarantees that the execution of concurrent transactions is equivalent to a serial execution of those transactions, meaning the outcome is the same as if the transactions had been executed sequentially, one after the other.
3. Conflict Resolution: Concurrency control mechanisms detect and resolve conflicts that arise when multiple transactions attempt to access or modify the same data simultaneously. Conflicts are typically resolved by locking, timestamp-based methods, or optimistic concurrency control techniques.
4. Consistency and Correctness: Concurrency control ensures that the database remains in a consistent state despite concurrent execution of transactions. It prevents data corruption or inconsistencies that might arise due to simultaneous access or modification.
Concurrency control mechanisms include:
· Locking: Transactions acquire locks on data items they want to access or modify, preventing other transactions from accessing or modifying the same data concurrently. This ensures serializability but can lead to issues like deadlocks.
· Timestamp-based methods: Assigning timestamps to transactions and data items to determine their order of execution and resolve conflicts based on these timestamps.
· Optimistic Concurrency Control: Transactions are allowed to proceed without locking, and conflicts are detected at commit time. If conflicts are detected, appropriate actions, such as rollback or retry, are performed.
Concurrency control is crucial in multi-user database systems, distributed computing environments, and multi-threaded applications to maintain data consistency, integrity, and correctness despite simultaneous and concurrent execution of transactions or operations.

4.What is meant by nested transactions

Nested transactions refer to a concept in transaction management where transactions are encapsulated within other transactions, creating a hierarchical or nested structure. In this scenario, a transaction can initiate or contain one or more sub-transactions, also known as nested transactions.
Key points about nested transactions:
1. Hierarchy: Transactions can be nested within each other, creating a parent-child relationship. The outer transaction is considered the parent transaction, and any transactions initiated within it are nested or child transactions.
2. Atomicity at Different Levels: Each nested transaction operates within the scope of its parent transaction. They follow the principles of atomicity within their scope, meaning they are treated as a single unit of work that is either fully completed or fully rolled back.
3. Commit and Rollback Behavior: Committing or rolling back a nested transaction can affect its parent transaction. The effects of nested transactions are not visible outside their parent transaction until the parent transaction commits.
4. Savepoints: Nested transactions may have savepoints, allowing for partial rollback or recovery within the scope of the nested transaction without affecting the entire parent transaction.
5.Define deadlock

Deadlock is a situation in computer science, particularly in multi-threaded or multi-process systems, where two or more processes are unable to proceed because each is waiting for the other to release a resource, resulting in a circular waiting condition.
Key characteristics of a deadlock:
1. Mutual Exclusion: Processes hold resources exclusively, meaning a resource can only be used by one process at a time and cannot be shared.
2. Hold and Wait: Processes hold resources while waiting for additional resources that are held by other processes. This creates a scenario where each process is waiting for a resource held by another process.
3. No Preemption: Resources cannot be forcibly taken from a process. A process must voluntarily release a resource before it can be allocated to another process.
4. Circular Waiting: There exists a circular chain of processes, each waiting for a resource held by the next process in the chain, forming a deadlock.
6.Define time stamp ordering

Timestamp ordering is a concurrency control technique used in database systems to ensure serializability and maintain consistency in executing transactions concurrently. It relies on assigning unique timestamps to transactions and data items, allowing the system to determine the order of transactions and enforce a consistent execution sequence.

7.Define two-phase commit protocol

The Two-Phase Commit (2PC) protocol is a distributed algorithm used to ensure atomicity and consistency in distributed systems involving multiple independent transactional resources or components. It ensures that all involved resources either commit or abort a transaction together, maintaining data consistency across distributed systems.
8. what is deadlock detection
Deadlock detection is a mechanism employed in operating systems and concurrent systems to identify and resolve deadlock situations. A deadlock occurs when two or more processes are unable to proceed because each is waiting for the other to release a resource that it needs.
In a deadlock situation, processes may hold resources while waiting for additional resources that are held by other processes, creating a circular dependency where none of the processes can continue execution.
Deadlock detection involves periodically checking the system's state to identify whether a deadlock has occurred. This process typically involves:
1. Resource Allocation Graphs (RAGs): One common method for deadlock detection is using RAGs, which represent processes as nodes and resource allocations as edges. By analyzing the graph, cycles can be identified, indicating potential deadlocks.
2. Algorithmic Approaches: Other algorithms, like the Banker's algorithm, analyze the state of resource allocations to predict if granting additional resources will potentially lead to a deadlock.
3. Resource Tracking: Some systems keep track of resource allocation and requests to identify patterns that might indicate a deadlock situation. For instance, if processes are waiting indefinitely for resources, it could indicate a deadlock.
Once a deadlock is detected, the system needs to resolve it. Common resolution strategies include:
· Resource Preemption: Temporarily preempting resources from one or more processes to break the circular wait and allow the system to recover from the deadlock.
· Process Termination: Terminating one or more processes involved in the deadlock to release the resources they hold and allow other processes to continue.
· Rollback and Restart: Rolling back the progress of some processes to a safe state and restarting them to avoid the deadlock condition.

[bookmark: unit_4.pdf]9.Explain optimistic concurrency control
Optimistic concurrency control is a strategy used in database management systems (DBMS) to handle concurrent access to data without locking resources preemptively. It assumes that conflicts between transactions are rare and allows multiple transactions to work on the same data simultaneously, deferring conflict resolution until the transactions commit.
Principles of Optimistic Concurrency Control:
1. No Locks on Read Operations:
· Read operations don't acquire locks on data resources. Transactions are free to read data without blocking other transactions.
2. Detection of Conflicts during Commit:
· Conflicts between concurrent transactions are detected at the time of commit rather than during their execution.
· The DBMS checks if changes made by a transaction conflict with changes made by other transactions that have committed in the interim.
3. Versioning or Timestamps:
· Versions or timestamps are associated with data items to track changes made by different transactions.
· Each transaction works on a specific version of a data item, and these versions are used to determine if conflicts occur.
Process of Optimistic Concurrency Control:
1. Read Phase:
· Transactions read data items without acquiring any locks.
· The DBMS records the versions or timestamps of the data items read by the transaction.
2. Validation Phase (at Commit):
· Before committing, the transaction verifies if the data items it read remain unchanged by other committed transactions.
· It compares the recorded versions or timestamps with the current versions to check for conflicts.
3. Commit Phase:
· If no conflicts are detected during the validation phase, the transaction commits and makes its changes permanent.
· If conflicts are found, the transaction might be aborted or retried, depending on the conflict resolution strategy.
Conflict Resolution:
1. Abort and Retry:
· If conflicts are detected during the validation phase, the transaction is aborted and restarted to re-read data and reapply changes.
2. Merge or Resolve Conflicts:
· In some cases, conflicts can be resolved by merging changes from different transactions, especially in collaborative editing scenarios.
Advantages of Optimistic Concurrency Control:
1. Reduced Locking Overhead:
· It reduces the need for locks, allowing concurrent access to data and improving overall system throughput.
2. Favorable for Low Contention:
· It works well in scenarios where conflicts between transactions are infrequent, reducing contention for locks.
3. Better Scalability:
· Optimistic concurrency control tends to scale better in systems with high transaction rates compared to more conservative locking mechanisms.
Limitations and Considerations:
1. Potential for Retries:
· Transactions might need to be retried if conflicts occur, leading to increased overhead in cases of frequent conflicts.
2. Data Validation Overhead:
· Validation at commit time can be resource-intensive, especially in systems with high transaction rates or large datasets.
3. Not Suitable for High Contention:
In scenarios with frequent conflicts or high contention for resources, optimistic concurrency control might lead to increased abort rates and reduced performance.
Optimistic concurrency control is effective in scenarios where conflicts between transactions are infrequent and the overhead of locking is not justified. It enables higher concurrency and throughput in databases, assuming conflicts are rare and can be efficiently managed at the time of transaction commit.
10.what is deadlock detection
Atomic commit protocols are mechanisms used in distributed systems to ensure that multiple operations or transactions either complete successfully together or fail together as a single unit, maintaining consistency across distributed resources.
In a distributed environment where multiple resources are involved, such as databases, file systems, or services, ensuring that all changes or updates either succeed together (commit) or fail together (abort) is crucial to maintain data integrity. Atomic commit protocols manage this coordination among distributed resources.
There are several atomic commit protocols, with two significant types:
Two-Phase Commit (2PC): This is a widely used atomic commit protocol. It involves two phases - a prepare phase and a commit phase.
Prepare Phase: In this phase, the coordinator (usually the transaction manager) asks each participating resource if it is ready to commit the transaction. Each resource responds with a prepared or abort decision.
Commit Phase: Based on the responses from all resources, if all resources are prepared, the coordinator sends a commit command to all resources. If any resource is not prepared or there's a failure, the coordinator sends an abort command to all resources.
The 2PC ensures that either all resources commit the transaction or all abort it, thus maintaining atomicity.
Three-Phase Commit (3PC): This is an extension of the two-phase commit protocol and adds an extra phase to ensure improved fault tolerance and reduce the chances of indefinite blocking that can occur in 2PC.
Pre-Commit Phase: After the prepare phase, the coordinator sends a can-commit message to all participants. They respond with a yes or no, and in the case of a timeout or uncertainty, they might respond with a wait.
Commit Phase: If all participants respond with a yes, the coordinator sends a pre-commit message to all. Otherwise, if any participant responds with a no or if a timeout occurs, the coordinator sends an abort message to all.
Final Commit Phase: This phase ensures that even if the coordinator fails after pre-commit but before sending the final commit message, the participants can reach a decision based on their stored information.

[bookmark: unit_5.pdf] UNIT-V
1.what is replication
Replication, in computing and data management, refers to the process of creating and maintaining multiple copies of data or resources across different locations, systems, or devices. The primary purpose of replication is to improve data availability, fault tolerance, performance, and accessibility.
Key aspects of replication:
1. Data Duplication: Replication involves creating copies of data, files, databases, or resources and distributing them across multiple nodes, servers, or storage devices.
2. Redundancy and Fault Tolerance: By having multiple copies of data, systems can continue to function even if one copy becomes unavailable due to hardware failure, network issues, or other problems. Redundancy ensures fault tolerance and high availability.
3. Load Balancing and Performance: Replication allows systems to distribute the workload across multiple servers or nodes, improving performance by reducing the burden on a single system.
4. Geographical Distribution: Replicated data can be stored in different geographical locations, enabling faster access for users in different regions and providing disaster recovery capabilities.
Types of replication:
· Full Replication: Entire datasets or resources are replicated across all nodes or servers, ensuring complete redundancy but potentially consuming more storage and network resources.
· Partial Replication: Only a subset of data is replicated across multiple nodes or servers, providing a balance between redundancy and resource utilization.
Replication can be implemented using various strategies and technologies, including:
· Master-Slave Replication: One node (master) is responsible for updates, and changes are replicated to multiple other nodes (slaves).
· Peer-to-Peer Replication: All nodes in the replication network have equal status and can send and receive updates among themselves.
Replication plays a crucial role in ensuring data availability, scalability, and reliability in distributed systems, databases, content delivery networks (CDNs), and other computing environments where high availability and fault tolerance are critical.
2.what do you meant by fault tolerance
Fault tolerance refers to a system's ability to continue functioning properly even when some of its components fail or encounter errors. It's like having a safety net in place to ensure that if something goes wrong, the system can still operate without a complete shutdown or failure.
In practical terms, fault tolerance involves designing systems or technologies in a way that allows them to withstand, isolate, and recover from faults or failures without causing a complete breakdown. This can involve redundancy, where backup components or systems are in place to take over if something fails, or it might involve error-detection mechanisms that can identify issues and mitigate their impact.
For instance, in computer systems, fault tolerance might involve redundant storage systems, backup power supplies, or error-correcting codes to ensure that even if some parts fail or encounter errors, the system as a whole can continue to operate without significant disruption.
3.Explain how primary backup model of replication is fault tolerance
The primary-backup model of replication is a fault-tolerant approach used in distributed systems to ensure reliability and resilience against failures. In this model, there are typically two components: the primary (or master) and the backup (or replica). The primary is responsible for handling all incoming requests, while the backup replicates the state of the primary.
When a request comes in, the primary processes it and concurrently updates the backup to mirror its current state. If the primary encounters a failure, such as a crash or an error, the backup can take over as the new primary, ensuring continuity of service. This transition is often seamless to the end-users because the backup, having replicated the state of the primary, is ready to take over without losing any critical data.
The fault tolerance in this model comes from the ability to switch roles between the primary and backup components. Even if the primary fails, the backup is ready to step in and continue the operations. To maintain consistency and avoid data loss, synchronization mechanisms are employed to ensure that the backup is up-to-date with the primary's state.
This model ensures high availability and reliability, as it mitigates the risk of a single point of failure. However, it's crucial to manage the synchronization process effectively and handle potential conflicts or inconsistencies between the primary and backup to maintain data integrity.
4.Explain fault tolerant services in distributed system.
Fault-tolerant services in distributed systems are designed to continue operating correctly and provide essential functionalities even in the presence of faults, errors, or failures. The goal is to ensure the system's reliability, availability, and data consistency despite various types of failures that can occur in distributed environments. Here are key aspects of fault-tolerant services:
1. Redundancy:
· Replication: Duplicate copies of critical components, data, or services are maintained across multiple nodes in the system. If one node fails, other replicas can take over seamlessly.
· Diverse Redundancy: Employing diverse redundancy mechanisms (like hardware redundancy, data redundancy, or algorithmic redundancy) increases resilience.
2. Failure Detection:
· Monitoring and Detection: Implementing mechanisms to detect failures, including node failures, communication failures, or application-level failures.
· Heartbeats and Health Checks: Using periodic checks or heartbeats to monitor the health and availability of nodes or services.
3. Fault Recovery:
· Fault Isolation: Isolating failed components or nodes to prevent cascading failures from affecting the entire system.
· Reconfiguration: Reconfiguring the system by replacing failed components with backups or replicas and redistributing tasks or responsibilities.
4. Consensus and Agreement:
· Consensus Algorithms: Implementing algorithms like Paxos or Raft to achieve agreement among distributed nodes, ensuring consistent decision-making even in the presence of faults.
· Quorum Systems: Using quorum-based techniques to make decisions based on agreement among a subset of nodes.
5. Graceful Degradation:
· Fallback Mechanisms: Providing alternative, simplified, or degraded modes of operation in the event of failure to ensure basic functionality.
· Load Shedding: Prioritizing critical functionalities and shedding non-critical tasks or loads during high-stress situations.
6. Data Integrity and Recovery:
· Checksums and Validation: Using checksums or validation mechanisms to ensure data integrity during transmission and storage.
· Backup and Restore: Regularly backing up data and implementing recovery mechanisms to restore data in case of corruption or loss.
7. Failure Masking and Tolerance:
· Masking Techniques: Employing techniques like error correction codes or redundancy to mask faults or errors, ensuring uninterrupted service.
· Tolerance to Transient Faults: Building systems capable of tolerating transient faults without causing disruptions.
8. Dynamic Adaptation:
· Self-Healing Mechanisms: Systems that can dynamically adapt to changing conditions, automatically recovering from failures or adjusting configurations to maintain performance and availability.
Top of Form

5. What is Distributed Shared Memory (DSM)? Describe its architecture
 Architecture of Distributed Shared Memory (DSM):
1. Global Address Space:
· DSM presents a global address space accessible by all nodes in the distributed system. Each node can access the entire shared memory using memory addresses just as in a traditional single-machine system.
2. Memory Access Mechanisms:
· Remote Access: Nodes access data in remote memory regions by issuing read or write requests to other nodes.
· Page-Based Access: DSM systems often use a page-based approach, where memory is divided into pages, and each node holds a portion of these pages. Remote pages are accessed through a network communication protocol.
3. Consistency Models:
· Cache Coherence: Maintaining data consistency across distributed nodes is crucial. Various consistency models (e.g., strict consistency, sequential consistency, eventual consistency) define rules for data visibility and update propagation among nodes.
4. Access Coordination:
· Synchronization Mechanisms: To ensure data integrity and consistency, DSM systems employ synchronization mechanisms like locks, semaphores, or barriers that coordinate access to shared data among distributed nodes.
5. Communication Layer:
· Network Communication: DSM systems rely on network communication protocols to transfer data between nodes. This involves efficient data serialization, transmission, and deserialization.
6. Memory Management:
· Mapping and Distribution: DSM systems map logical memory addresses to physical locations across nodes. They manage the distribution of memory pages among nodes and handle page migration or replication strategies.
7. Fault Tolerance:
· Resilience to Node Failures: DSM architectures often include fault-tolerant mechanisms to handle node failures, ensuring that the system continues to operate despite individual node failures.
8. Performance Considerations:
· Latency and Overhead: DSM systems need to optimize communication overhead and reduce latency for remote memory access. Efficient algorithms and protocols are used to minimize these factors.
 6.Explain in detail the concept of memory coherence
Memory coherence refers to the consistency of shared data in a multiprocessor or multi-threaded system where multiple processors or cores have access to the same memory locations. It ensures that when multiple processors or cores are reading and writing to the same shared data, the values seen by each processor are consistent and reflect the most recent write operation.
In a multiprocessor system, each processor might have its cache memory to improve performance. When one processor writes to a particular memory location, other processors' caches that have a copy of that memory location need to be updated to reflect the new value. Memory coherence mechanisms ensure that these caches remain consistent to prevent data inconsistencies and errors that could arise due to stale or outdated data.
There are several approaches to achieve memory coherence:
Invalidation-based Coherence: In this approach, when a processor writes to a memory location, it invalidates or marks as invalid any copies of that memory location in other processors' caches. When another processor tries to read or write to that memory location, it fetches the updated value from the main memory or the updated cache line.
Update-based Coherence: Here, when a processor writes to a memory location, it updates the value in its cache and propagates the update to other caches that have copies of that memory location. This ensures that all caches hold the most recent value.
Maintaining memory coherence is essential for program correctness and system reliability in parallel computing environments. However, ensuring coherence can introduce overhead due to the need for cache synchronization between different processors or cores. Techniques like cache coherence protocols (e.g., MESI - Modified, Exclusive, Shared, Invalid) and memory barriers (e.g., memory fence instructions) are used to manage and enforce memory coherence.
Cache coherence protocols define how caches interact and ensure that changes made by one processor are visible to other processors at the right times. Memory barriers are synchronization mechanisms that enforce the order of memory operations, ensuring that certain operations complete before others begin, thereby preserving memory coherence.
Implementing efficient coherence protocols and synchronization mechanisms is crucial for maintaining both correctness and performance in parallel computing systems.

7.Define two-phase commit protocol
The Two-Phase Commit (2PC) protocol is a distributed algorithm used to ensure atomicity and consistency in distributed systems involving multiple independent transactional resources or components. It ensures that all involved resources either commit or abort a transaction together, maintaining data consistency across distributed systems.

8.Differentiate between caching and replication
Caching:
1. Purpose:
· Performance Improvement: Caching aims to speed up data retrieval and reduce latency by storing frequently accessed data closer to the user or application.
2. Data Storage:
· Temporary Storage: Cached data is typically stored temporarily in a fast-access storage medium, such as RAM or SSDs, closer to the consumer of that data.
3. Data Consistency:
· May Sacrifice Consistency: Caches might contain stale data since they hold copies that are not always up-to-date. Strategies like cache expiration or validation (checking if data is still valid) are used to manage consistency.
4. Data Access:
· Transparent Retrieval: The cache sits between the user/application and the primary data source. If the requested data is present in the cache, it's directly served from there; otherwise, it's fetched from the primary source and cached for subsequent requests.
5. Scalability:
· Enhances Scalability: Caches alleviate the load on primary data sources by serving frequently accessed data locally, which can improve scalability and reduce bottlenecks.
Replication:
1. Purpose:
· Enhanced Availability and Fault Tolerance: Replication is used to improve availability and fault tolerance by creating redundant copies of data across multiple nodes or locations.
2. Data Storage:
· Duplicate Data: Replication involves storing complete copies of data in multiple locations or nodes within a distributed system.
3. Data Consistency:
· Maintains Consistency: Generally, replication aims to keep data consistent across all replicas. Changes made in one replica are propagated to others to ensure uniformity.
4. Data Access:
· Load Balancing and Failover: Replication allows for load balancing and failover mechanisms, enabling requests to be distributed across replicas and providing backup sources if one replica fails.
5. Scalability:
Redundancy for Reliability: Replication doesn't necessarily improve scalability directly but provides redundancy, enhancing reliability and fault tolerance.

9.Explain fault tolerant services in distributed system.
Fault-tolerant services in distributed systems are designed to continue operating correctly and provide essential functionalities even in the presence of faults, errors, or failures. The goal is to ensure the system's reliability, availability, and data consistency despite various types of failures that can occur in distributed environments. Here are key aspects of fault-tolerant services:
1. Redundancy:
· Replication: Duplicate copies of critical components, data, or services are maintained across multiple nodes in the system. If one node fails, other replicas can take over seamlessly.
· Diverse Redundancy: Employing diverse redundancy mechanisms (like hardware redundancy, data redundancy, or algorithmic redundancy) increases resilience.
2. Failure Detection:
· Monitoring and Detection: Implementing mechanisms to detect failures, including node failures, communication failures, or application-level failures.
· Heartbeats and Health Checks: Using periodic checks or heartbeats to monitor the health and availability of nodes or services.
3. Fault Recovery:
· Fault Isolation: Isolating failed components or nodes to prevent cascading failures from affecting the entire system.
· Reconfiguration: Reconfiguring the system by replacing failed components with backups or replicas and redistributing tasks or responsibilities.
4. Consensus and Agreement:
· Consensus Algorithms: Implementing algorithms like Paxos or Raft to achieve agreement among distributed nodes, ensuring consistent decision-making even in the presence of faults.
· Quorum Systems: Using quorum-based techniques to make decisions based on agreement among a subset of nodes.
5. Graceful Degradation:
· Fallback Mechanisms: Providing alternative, simplified, or degraded modes of operation in the event of failure to ensure basic functionality.
· Load Shedding: Prioritizing critical functionalities and shedding non-critical tasks or loads during high-stress situations.
6. Data Integrity and Recovery:
· Checksums and Validation: Using checksums or validation mechanisms to ensure data integrity during transmission and storage.
· Backup and Restore: Regularly backing up data and implementing recovery mechanisms to restore data in case of corruption or loss.
7. Failure Masking and Tolerance:
· Masking Techniques: Employing techniques like error correction codes or redundancy to mask faults or errors, ensuring uninterrupted service.
· Tolerance to Transient Faults: Building systems capable of tolerating transient faults without causing disruptions.
8. Dynamic Adaptation:
· Self-Healing Mechanisms: Systems that can dynamically adapt to changing conditions, automatically recovering from failures or adjusting configurations to maintain performance and availability.

10.Discuss in brief about group communication

Group communication refers to the exchange of information or messages among multiple entities, often within a defined group or set of participants. It involves interactions where messages are shared among multiple members simultaneously, fostering discussions, collaborations, and the dissemination of information within a collective.
Here are a few key aspects of group communication:
1. Collaboration: Group communication enables collaboration among members, allowing them to work together towards a common goal. It encourages sharing ideas, pooling resources, and leveraging diverse perspectives to achieve better outcomes.
2. Information Sharing: It facilitates the sharing of information, knowledge, and updates within a group. This could be through various mediums such as meetings, emails, video conferences, instant messaging, or collaborative tools, ensuring that everyone has access to relevant information.
3. Decision Making: Groups often engage in communication to make collective decisions. Discussions, debates, and exchanges of opinions within a group help in evaluating options and reaching consensus or democratic decisions.
4. Problem Solving: In group communication, members can collectively address problems or challenges. Different viewpoints and expertise can contribute to analyzing issues comprehensively and developing effective solutions.
5. Team Building: Effective group communication fosters relationships among members, building trust and camaraderie. It can create a positive team dynamic, enhance morale, and strengthen the bonds between individuals.
Technological advancements have expanded the ways groups communicate. Online collaboration tools, video conferencing platforms, project management software, and social media networks enable efficient communication among geographically dispersed teams or communities.
image1.png
CMR

‘GROUP OF INSTITUTIONS

EXPLORE TO INVENT

