
1

CMR ENGINEERING COLLEGE
KANDLAKOYA (V), MEDCHAL (M), HYDERABAD

STEP MATERIAL ON JAVA PROGRAMMING

Subject : Java Programming

Year: II Year/II Sem

Academic Year:2020-2021

2

INSTITUTE VISION AND MISSION

VISION

To be recognized as a premier institution in offering value based and futuristic quality
technical education to meet the technological needs of the society

MISSION

• To impart value based quality technical education through innovative teaching and
learning methods

• To continuously produce employable technical graduates with advanced technical skills

to meet the current and future technological needs of the society

• To prepare the graduates for higher learning with emphasis on academic and industrial

research

DEPARTMENT VISION AND MISSION

VISION

To produce globally competent and industry ready graduates in Computer Science &

Engineering by imparting quality education with a know-how of cutting edge technology

and holistic personality

MISSION

 To offer high quality education in Computer Science & Engineering in order to

build core competence for the graduates by laying solid foundation in Applied

Mathematics, and program framework with a focus on concept building

 The department promotes excellence in teaching, research, and collaborative
activities to prepare graduates for professional career or higher studies

 Creating intellectual environment for developing logical skills and problem solving

strategies, thus to develop, able and proficient computer engineer to compete in the

current global scenario

3

PART –A

UNIT WISE SHORT QUESTION AND ANSWERS

UNIT-I

1. **What is data abstraction? [2M]

Ans:

Abstraction refers to the act of representing essential features without including background

details or explanations(or)Abstraction is a process of hiding unnecessary information

An essential element of object-oriented programming is abstraction. Humans

manage complexity through abstraction. For example, people do not think of a car as a set of

tens of thousands of individual parts. They think of it as a well-defined object with its own

unique behavior. They can ignore the details of how the engine, transmission, and braking

systems work. Instead, they are free to utilize the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical

classifications. This allows you to layer the semantics of complex systems, breaking them

into more manageable pieces. From the outside, the car is a single object. Once inside, you

see that the car consists of several subsystems: steering, brakes, sound system, seat belts,

heating, cellular phone, and so on.

Hierarchical abstractions of complex systems can also be applied to computer

programs. The data from a traditional process-oriented program can be transformed by

abstraction into its component objects

2. Explain the feature of Java [3M]

Ans: A list of most important features of Java language is given below.

1. Simple

2. Object-Oriented

3. Platform independent

4. Secured

5. Robust

6. Architecture neutral

7. Portable

8. Dynamic

9. Interpreted

10. High Performance

4

11. Multithreaded

12. Distributed

5

 Simple:
Java language is simple because:

1) Syntax is based on C++ (so easier for programmers to learn it after C++).

2) Removed many confusing and/or rarely-used features

Ex.; explicit pointers, operator overloading etc.

3) No need to remove unreferenced objects ,to do this Automatic Garbage Collection in

java.

 Object-oriented :
Object-Oriented means we organize our software as a combination of different types of

objects that incorporates both data and behaviour. Object-oriented programming (OOPs)

is a methodology that simplifies software development and maintenance by providing

some principles. They are :

1. Object

2. Class

3. Inheritance

4. Polymorphism

5. Abstraction

6. Encapsulation

 Platform Independence :
Java provides software-based platform. The Java platform differs from most other

platforms in the sense that it's a software-based platform that runs on top of other

hardware-based platforms. It has two components:

1. Runtime Environment

2. API(Application Programming Interface)

Java code can be run on multiple platforms e.g.Windows,Linux,SunSolaris,Mac/OS etc.

Java code is compiled by the compiler and converted into bytecode.This bytecode is a

platform independent code because it can be run on multiple platforms i.e. Write Once

and Run Anywhere(WORA).

 Secured:
Java is secured because

1. There is no explicit pointers.

2. Programs run inside virtual machine sandbox.

 Robust :

Robust simply means strong. Java uses strong memory management. There is automatic

garbage collection in java. There is exception handling and type checking mechanism in

java. All these points makes java robust.

6

 Architecture-neutral:
There are no implementation dependent features Ex.;size of primitive types is set

 Portable :
We may carry the java bytecode to any platform.

 High-performance:
Java is faster than traditional interpretation since byte code is "close" to native code still

somewhat slower than a compiled language (e.g., C++)

 Distributed :
We can create distributed applications in java. RMI and EJB are used for creating

distributed applications. We may access files by calling the methods from any machine

on the internet.

 Multi-threaded:

A thread is like a separate program, executing concurrently. We can write Java programs

that deal with many tasks at once by defining multiple threads. The main advantage of

multi-threading is that it shares the same memory. Threads are important for multi-media,

Web applications etc.

3. Explain the types of operators used in java [3M]

Ans: Java provides a rich set of operators to manipulate variables. We can divide all the Java

operators into the following groups −

 Arithmetic Operators

 Relational Operators

 Bitwise Operators

 Logical Operators

 Assignment Operators

 Misc Operators

The Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are used in

algebra. The following table lists the arithmetic operators

Examples: +(addition) ,-(substaction), *(multiplication), /(division), %(modulo)

The Relational Operators

There are following relational operators supported by Java language.

7

Examples: == (equal to), != (not equal to),> (greater than), < (less than), >= (greater than or

equal to), <= (less than or equal to)

The Bitwise Operators

Java defines several bitwise operators, which can be applied to the integer types, long, int, short,

char, and byte.

Example: & (bitwise and), | (bitwise or), ^ (bitwise XOR), ~ (bitwise compliment), << (left

shift), >> (right shift), >>> (zero fill right shift)

The Logical Operators

The lists the logical operators −

 Examples: && (logical and), || (logical or), ! (logical not)

The Assignment Operators

Following are the assignment operators supported by Java language –

=,+=,-=,*=,/=,%=,<<=,>>=,&=,^=,|=

Miscellaneous Operators

Miscellaneous operators includes

 Conditional Operator (? :)

 instanceof Operator

4. What is static inner class(or) difference static inner and non static inner classes [3M]

There are two differences between static inner and non static inner classes.

In case of declaring member fields and methods, non static inner class cannot have static fields

and methods. But, in case of static inner class, can have static and non static fields and method.

The instance of non static inner class is created with the reference of object of outer class, in

which it has defined, this means it has enclosing instance. But the instance of static inner class

https://www.tutorialspoint.com/java/java_relational_operators_examples.htm
https://www.tutorialspoint.com/java/java_logical_operators_examples.htm

8

is created without the reference of Outer class, which means it does not have enclosing

instance.

See this example

class A

{

class B

{

// static int x; not allowed here

}

static class C

{

static int x; // allowed here

}

}

class Test

{

public static void main(String… str)

{

A a = new A();

// Non-Static Inner Class

// Requires enclosing instance

A.B obj1 = a.new B();

// Static Inner Class

// No need for reference of object to the outer class

A.C obj2 = new A.C();

}

}

9

5. List string manipulation functions of Java String class. [3M]

Method Description

int length() returns string length

static String format(String format, Object...

args)

returns formatted string

String substring(int beginIndex, int endIndex) returns substring for given begin index and end

index

static String join(CharSequence delimiter,

CharSequence... elements)

returns a joined string

boolean isEmpty() checks if string is empty

String concat(String str) concatenates specified string

String toLowerCase() Returns string in lowercase.

String toUpperCase() Returns string in uppercase.

String trim() Removes beginning and ending spaces of this

string.

static String valueOf(int value) Converts given type into string. It is

overloaded.

6. Explain the use of ‘final’ keyword. [3M]

The final keyword in java is used to restrict the user. The java final keyword can be used in many

context. Final can be:

 variable

 method

 class

if a variable is made as final it cannot change its value

if a method is made as final it cannot override it.

If a class is made as final it cannot be extended by another class

http://www.javatpoint.com/java-string-length
http://www.javatpoint.com/java-string-format
http://www.javatpoint.com/java-string-format
http://www.javatpoint.com/java-string-substring
http://www.javatpoint.com/java-string-join
http://www.javatpoint.com/java-string-join
http://www.javatpoint.com/java-string-isempty
http://www.javatpoint.com/java-string-concat
http://www.javatpoint.com/java-string-tolowercase
http://www.javatpoint.com/java-string-touppercase
http://www.javatpoint.com/java-string-trim
http://www.javatpoint.com/java-string-valueof

10

Program to demonstrate using final with inheritance

final class Bike

{

}

class Honda1 extends Bike //error since Bike is final we can’t inherit it properties

{

void run()

{

System.out.println("running safely with 100kmph");

}

public static void main(String args[]){

Honda1 honda= new Honda();

honda.run();

}

}

7. Differentiate between class and object. [2M]

A list of differences between object and class are given below:

s.No. Class Object

1) Class is a blueprint or

template from which objects

are created.

Object is an instance of a class.

2) Class is a group of similar

objects.

Object is a real world entity such as pen, laptop,

mobile, bed, keyboard, mouse, chair etc.

3) Class is a logical entity. Object is a physical entity.

4) Class is declared using class

keyword e.g.

class Student{}

Object is created through new keyword mainly

e.g.

Student s1=new Student();

5) Class is declared once. Object is created many times as per

requirement.

6) Class doesn't allocated

memory when it is created.

Object allocates memory when it is created.

7) There is only one way to

define class in java using

class keyword.

There are many ways to create object in java

such as new keyword, newInstance() method,

clone() method, factory method and

deserialization.

11

Let's see some real life example of class and object in java to understand the difference well:

Class: Human Object: Man, Woman

Class: Fruit Object: Apple, Banana, Mango, Guava wtc.

Class: Mobile phone Object: iPhone, Samsung, Moto

Class: Food Object: Pizza, Burger, Samosa

8. **What is meant by ad-hoc polymorphism?(or)What is polymorphism [3M]

Ans:

Polymorphism in Java is a concept by which we can perform a single action in

different ways There are two types of polymorphism in Java:

1. Compile-time polymorphism or Ad hoc polymorphism

2. Runtime polymorphism. Or Pure polymorphism

Compile

-time polymorphism or Ad hoc polymorphism:

Ad hoc polymorphism is also known as function overloading or operator overloading because a

polymorphic function can represent a number of unique and potentially different

implementations depending on the type of argument it is applied to.

The term ad hoc in this context is not intended to be pejorative; it refers simply to the

fact that this type of polymorphism is not a fundamental feature of the type system .

Example of Ad hoc polymorphism i)operator overloading :ii)Method Overloading:

12

abstract class Hello

{

abstract void hai();

}

abstract class Demo extends Hello

{

}

class Welcome extends Demo

{

void hai()

{

System.out.println("hello");

}

}

public class AbstractClass {

public static void main(String args[])

{

//A oa=new A();//error because for abstract class we can't create object

//Demo ob=new Demo();//error because for abstract class we can't create object

//ob.hai();//error

Welcome oh=new Welcome();

oh.hai();

}

}

9. What is abstract class? Give example. [2M]

Ans:

Abstract class in Java

 A class that is declared with abstract keyword, is known as abstract class in java.

 It can have abstract and non-abstract methods (method with body).

 It needs to be extended and its method implemented.

 It cannot be instantiated.

Example abstract class

13

10. What is inheritance? Give example. [2M]

Inheritance is the process by which objects of one class acquire the properties of objects of

another class. Inheritance supports the concept of hierarchical classification as shown

below.

11. Define the basic characteristics of object oriented programming. [3M]

The characteristics of OOP are:

Class definitions – Basic building blocks OOP and a single entity which has data and operations on data

together

Objects – The instances of a class which are used in real functionality – its variables and operations

Abstraction – Specifying what to do but not how to do ; a flexible feature for having a overall view of an

object’s functionality.

Encapsulation – Binding data and operations of data together in a single unit – A class adhere this feature

Inheritance and class hierarchy – Reusability and extension of existing classes

Polymorphism – Multiple definitions for a single name - functions with same name with different
functionality; saves time in investing many function names Operator and Function overloading

Generic classes – Class definitions for unspecified data. They are known as container classes. They are
flexible and reusable.

Class libraries – Built-in language specific classes

14

for (initialization; condition; increment/decrement)

{

statement;

}

Message passing – Objects communicates through invoking methods and sending data to them. This

feature of sending and receiving information among objects through function parameters is known as
Message Passing.

12. Explain the use of ‘for’ statement in Java with an example. [3M]

class forLoopTest

{

public static void main(String args[])

{
for (int j = 1; j <= 5; j++)

System.out.print(j);

}
}
Output:

1 2 3 4 5

For-Each Loop :

For-Each loop is used to traverse through elements in an array. It is easier to use because we don’t have to

increment the value. It returns the elements from the array or collection one by one.

Example:
class foreachDemo {

public static void main(String args[]) {
int a[] = {10,15,20,25,30};

for (int i : a) {
System.out.print(i);

}
}

Output:

10 15 20 25 30

13. What is the significance of Java’s byte code? [2M]

Javac not only compiles the program but also generates the byte code for the program. Java byte code

is the instruction set for the Java Virtual Machine. It acts similar to an assembler which is an alias

representation of a C++ code. As soon as a java program is compiled, java byte code is generated. In

more apt terms, java byte code is the machine code in the form of a .class file. With the help of java

15

byte code we achieve platform independence in java.

The set of instructions for the JVM may differ from system to system but all can interpret the byte

code. A point to keep in mind is that byte codes are non-runnable codes and rely on the availability of

an interpreter to execute and thus the JVM comes into play.

byte code implementation makes Java a platform-independent language. This helps to add

portability to Java which is lacking in languages like C or C++. Portability ensures that Java can be

implemented on a wide array of platforms like desktops, mobile devices, severs and many more.

Supporting this, Sun Microsystems captioned JAVA as "write once, read anywhere" or "WORA" in

resonance to the byte code interpretation

14. List the applications of object oriented programming. [3M]

Main application areas of OOP are:

 User interface design such as windows, menu.

 Real Time Systems
 Simulation and Modeling
 Object oriented databases

 AI and Expert System
 Neural Networks and parallel programming
 Decision support and office automation systems etc.

1. Client-Server Systems

Object-oriented Client-Server Systems provide the IT infrastructure, creating object-oriented Client-Server

Internet (OCSI) applications. Here, infrastructure refers to operating systems, networks, and

hardware. OSCI consist of three major technologies:

The Client Server

Object-Oriented Programming

The Internet

2. Object-Oriented Databases

They are also called Object Database Management Systems (ODBMS). These databases store objects
instead of data, such as real numbers and integers. Objects consist of the following:

Attributes: Attributes are data that defines the traits of an object. This data can be as simple as integers and

real numbers. It can also be a reference to a complex object.

Methods: They define the behavior and are also called functions or procedures.

3. Object Oriented Databases

These databases try to maintain a direct correspondence between the real-world and database objects in

order to let the object retain their identity and integrity. They can then be identified and operated

upon.

16

4. Real-Time System Design

Real time systems inherit complexities that makes difficult to build them. Object-oriented techniques make

it easier to handle those complexities. These techniques present ways of dealing with these

complexities by providing an integrated framework which includes schedulability analysis and
behavioral specifications.

5. Simulation And Modelling System

It’s difficult to model complex systems due to the varying specification of variables. These are prevalent in

medicine and in other areas of natural science, such as ecology, zoology, and agronomic systems.

Simulating complex systems requires modelling and understanding interactions explicitly. Object-
oriented Programming provides an alternative approach for simplifying these complex modelling

systems.

6. Hypertext And Hypermedia

OOP also helps in laying out a framework for Hypertext. Basically, hypertext is similar to regular text as it

can be stored, searched, and edited easily. The only difference is that hypertext is text with pointers to

other text as well.

Hypermedia, on the other hand, is a superset of hypertext. Documents having hypermedia, not only contain

links to other pieces of text and information, but also to numerous other forms of media, ranging from
images to sound.

7. Neural Networking And Parallel Programming

It addresses the problem of prediction and approximation of complex time-varying systems. Firstly, the

entire time-varying process is split into several time intervals or slots. Then, neural networks are
developed in a particular time interval to disperse the load of various networks. OOP simplifies the

entire process by simplifying the approximation and prediction ability of networks.

8. Office Automation Systems
These include formal as well as informal electronic systems primarily concerned with information sharing

and communication to and from people inside as well as outside the organization. Some examples are

Email
Word processing

Web calendars

Desktop publishing

9. CIM/CAD/CAM Systems
OOP can also be used in manufacturing and design applications as it allows people to reduce the effort

involved. For instance, it can be used while designing blueprints, flowcharts, etc. OOP makes it

possible for the designers and engineers to produce these flowcharts and blueprints accurately.

10. AI Expert Systems
These are computer applications which are developed to solve complex problems pertaining to a specific

domain, which is at a level far beyond the reach of a human brain.

It has the following characteristics:Reliable,Highly responsive,Understandable,High-performance

17

15. Differentiate between break and continue statement. [2M]

ASIS FOR

COMPARISON

BREAK

CONTINUE

Task It terminates the execution of remaining

iteration of the loop.

It terminates only the current

iteration of the loop.

Control after

break/continue

'break' resumes the control of the program

to the end of loop enclosing that 'break'.

'continue' resumes the control of

the program to the next iteration

of that loop enclosing 'continue'.

Causes It causes early termination of loop. It causes early execution of the

next iteration.

Continuation 'break' stops the continuation of loop. 'continue' do not stops the

continuation of loop, it only

stops the current iteration.

Other uses 'break' can be used with 'switch', 'label'. 'continue' can not be executed

with 'switch' and 'labels'.

16. What is type casting? Explain with an example. [3M]

Ans:

The process of converting one data type to another data type is called as Casting

Types of castings:

There are two type of castings

1. Explicit type conversion (or) Narrowing conversion

2. Implicit type conversion (or) Widening conversion

1. Casting Incompatible Types or explicit type conversion or narrowing conversion

Casting larger data type into smaller data type may result in a loss of data.

This kind of conversion is sometimes called a narrowing conversion, since you are explicitly

making the value narrower.

2. Java’s Automatic Conversions or implicit type conversion or widening conversion

When one type of data is assigned to another type of variable, an automatic type conversion

will take place if the following two conditions are met:

a. The two types are compatible.

b. The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place.

17

class typecastdemo

{

public static void main(String args[])

{

float f=3.141,x;

int I,j=30;

i=(int)f;//explicit conversion

x=j;//implicit conversion

System.out.println(“i value is”+i);

System.out.println(“x value is”+x);

}

}

18

17. What is the use of super keyword? [2M]

The super keyword in java is a reference variable which is used to refer immediate parent class

object.Whenever you create the instance of subclass, an instance of parent class is created

implicitly which is referred by super reference variable

Usage of java super Keyword

1) super is used to refer immediate parent class instance variable.

2) super can be used to invoke parent class method

3) super is used to invoke parent class constructor

18. Why is Java known as platform independent? [3M]

Java provides software-based platform. The Java platform differs from most other

platforms in the sense that it's a software-based platform that runs on top of other

hardware-based platforms. It has two components:

1. Runtime Environment

2. API(Application Programming Interface)

Java code can be run on multiple platforms e.g.Windows,Linux,SunSolaris,Mac/OS etc.

Java code is compiled by the compiler and converted into bytecode.This bytecode is a

platform independent code because it can be run on multiple platforms i.e. Write Once

and Run Anywhere(WORA).

19

19. What is the size of char data type? Why does it differ from C language? [3M]

In java char uses 2 byte in java because java uses unicode system rather than ASCII code

system. \u0000 is the lowest range of unicode system.

Unicode System

Unicode is a universal international standard character encoding that is capable of
representing most of the world's written languages

20

UNIT-II

1. List the byte stream classes[3 M]

Ans:

Byte stream classes have been designed to provide functional features for creating and manipulating

streams and files for reading and writing Bytes.

Java provides two Byte streams

1. InputStream class

2. OutputStream class

1. InputStream Class:

 It is an abstract class that defines model of streaming byte input.

 It implements Closeable interface.

 It defines methods for perfoming input functions such as

 Reading Bytes

 Closing streams

 Marking positions in streams

 Skipping ahead in stream

 Finding the number of Bytes in a streams

2. OutputStream class:

 It is an abstract class that defines model of streaming byte output.

 It implements Closeable and Flushable interface.

 It defines methods for perfoming output functions such as

 Writing bytes

 Closing streams

 Flushing streams

2. Explain about implicit and explicit import statement[3]

Imports can be categorized as explicit (for example import

java.util.List;) or implicit (also known as 'on-demand', for example

import java.util.*;):

21

Implicit imports give access to all visible types in the type (or package)

that precedes the ".*"; types imported in this way never shadow other

types.

Explicit imports give access to just the named type; they can shadow

other types that would normally be visible through an implicit import, or

through the normal package visibility rules.

3. How to create and access a package? Or

How to create and use a package in Java program? Or

Define a Package? What is its use in java? Explain. Or

How to define a package in Java?

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form,

i) built-in package and

ii) user-defined package

To create a user defined package in java we use a keyword “package”

Syntax:

//let us save this program in D:/pack folder as A.java

package pack;

public class A

{

public void msg()

{

System.out.println("Hello");

}

}

Compile as: D:/pack>javac –d . A.java

import pack.*;

class B

{

package packagename[.subpackage1][.subpackage2]…[.subpackageN];

22

void seek(long newPos)throws IOException

public static void main(String args[])

{

A obj = new A();

obj.msg();

}

}

Compile as: D:/pack>javac –d . A.java

//save it D floder as B.java

Output:Hello

4. Write about the random access file operations[3]

RandamAccessFile class supported by java.io package allows us to create files that can be

used for reading and writing data with randam access.

This class implements DataInput,and DataOutput and Closeable Interfaces

It supports positioning request that means we can position the file pointer with in the file.

It has two constructors

RandamAccessFile(File fileObj,String access)throws FileNotFoundException

RandamAccessFile(String filename,String access)throws FileNotFoundException

In both cases,access determines what type of file access is permited.

Access Purpose

r File opened for reading purpose

rw File opened for read-write purpose

rws File opened for read-write purpose and every change to ythe file’s data or ymetadata

will be immediately written to physical device

rwd File opened for read-write purpose and every change to ythe file’s data will be

immediately written to physical device

The method seek() is used to set the current position of the file pointer

Syntax:

Here,newPos specifies the new position,in bytes,of the file pointer from the beginning of the

file.

23

5. Differentiate class, abstract class and interface. [2]

Concrete class Abstract class Interface

A class can have only non

abstract methods.

1) Abstract class can have

abstract and non-abstract

methods.

Interface can have only abstract

methods. Since Java 8, it can have

default and static methods also.

class doesn't support

multiple inheritance

2) Abstract class doesn't

support multiple

inheritance.

Interface supports multiple

inheritance.

class can have final, non-

final, static and non-static

variables.

3) Abstract class can have

final, non-final, static and

non-static variables.

Interface has only static and final

variables.

class can extend a class

and implementation of

interface.

4) Abstract class can provide

the implementation of

interface.

Interface can't provide the

implementation of abstract class.

The class keyword is used

to declare a class.

5) The abstract keyword is

used to declare abstract class.

The interface keyword is used to

declare interface.

Class can be initiated

using new keyword

Abstract Class can’t be

initiated using new keyword

Interface can’t be initiated using

new keyword

Concrete class can be

declared as final

Abstract Class can’t be

declared as final

Interface can’t be declared as

final

Example:

Class Demo extends super

implements interface{

}

6) Example:

public abstract class Shape{

public abstract void draw();

}

Example:

public interface Drawable{

void draw();

}

6. List out the benefits of Stream oriented I/O. [3]

 A stream in java is a path along which data flows.

 A stream presents a uniform,easy-to-use ,object oriented interface between the program

and the input/output devices

 It has a source(of data)and destination(for that data).Both the source and destination ma

be physical devices or programs or other streams in the same program.

Stream Benefits :

 The streaming interface to I/O in java provides a clean abstraction for a complex and

often cumbersome task. The composition of the filtered stream classes allows you to

dynamically build the custom streaming interface to suit your data transfer requirements.

Java programs written to adhere to the abstract, high-level Java InputStream Class, Java

OutputStream Class, Reader Class In Java, and Java Writer Class classes will function

properly in the future even when new and improved concrete stream classes are

https://java.meritcampus.com/core-java-topics/java-inputstream-class-or-inputstream-class-in-java
https://java.meritcampus.com/core-java-topics/java-inputstream-class-or-inputstream-class-in-java
https://java.meritcampus.com/core-java-topics/java-outputstream-class-or-outputstream-class-in-java
https://java.meritcampus.com/core-java-topics/java-outputstream-class-or-outputstream-class-in-java
https://java.meritcampus.com/core-java-topics/java-writer-class-or-writer-class-in-java

24

invented. This model works very well when we switch from a file system-based set of

streams to the network and socket streams

7. What is the benefit of Generics[2]

Java Generics programming is introduced in J2SE 5 to deal with type-safe objects. It makes the code

stable by detecting the bugs at compile time. Before generics, we can store any type of objects in the

collection, i.e., non-generic. Now generics force the java programmer to store a specific type of objects.

Generics allow us to provide the type of Object that a collection can contain, so if you try to add any

element of other type it throws compile time error

Advantages of Generics:

Programs that uses Generics has got many benefits over non-generic code.

Code Reuse: We can write a method/class/interface once and use for any type we want.

Type Safety : Generics make errors to appear compile time than at run time (It’s always better to know

problems in your code at compile time rather than making your code fail at run time). Suppose you want

to create an ArrayList that store name of students and if by mistake programmer adds an integer object

instead of string, compiler allows it. But, when we retrieve this data from Array List, it causes problems at

runtime

8 Differentiate between Enumeration and Iterator interface.

Enumeration and Iterator are two interfaces in java.util package which are used to

traverse over the elements of a Collection object. Though they perform the same function i.e

traversing the Collection object, there are some differences exist between them.

25

Enumeration Iterator

Using Enumeration, you can only
traverse the collection. You can’t do any
modifications to collection while
traversing it.

Using Iterator, you can remove an element of the
collection while traversing it.

Enumeration is introduced in JDK 1.0 Iterator is introduced from JDK 1.2

Enumeration is used to traverse the
legacy classes
like Vector, Stack and HashTable.

Iterator is used to iterate most of the classes in
the collection framework
like ArrayList, HashSet, HashMap, LinkedList etc.

Methods
: hasMoreElements() and nextElement()

Methods : hasNext(), next() and remove()

Enumeration is fail-safe in nature. Iterator is fail-fast in nature.

Enumeration is not safe and secured
due to it’s fail-safe nature.

Iterator is safer and secured than Enumeration.

9 What are the methods available in the character streams? [2]

 The character stream can be used to read and write Unicode characters.

 There are two kinds of character stream classes,namely

1.Reader

2.Writer

1. Reader Stream class:

 It is an abstract class that defines model of streaming character input.

 It implements Closeable and Readable interfaces

Below table gives the methods provided by Reader class

Method Description

abstract void close() Closes the input source

int read() Reads the character from the invoking input

stream .

return -1 when end of the file is encountered

int read(char buffer[]) Reads an array of character into buffer and

return -1 when end of the file is encountered

int read(char buffer[],int offset , int Reads numchar bytes into buffer starting from

26

numchar) offset.

return -1 when end of the file is encountered

boolean ready() Returns true if the next input request will not

wait .otherwise it returns false

void mark(int numChars) Places a mark at the current point in the input

stram that will remain valid until numchars

characters are read

void reset() Resets the input pointer to the previously set

mark

2. Writer Stream class:

 It is an abstract class that defines model of streaming character output.

 It implements Closeable,Flushable and Appendable interfaces

Below table gives the methods provided by Writer class

Method Description

abstract void close() Closes the output stream.

abstract void flush() Flushes the output stream

Writer append(char ch) Appends ch to the end of output stream

Writer append(CharSequence chars) Appends the chars to the end of the output

stream

Writer append(CharSequence chars,int

begin,int end)

Appends the subrange of chars specified by

begin and end-1 to the output stream.

void write(int ch) Write a single character to the output stream

void write(char buffer[]) Writes the complete array of characters to the

output stream

void write(String str) Write a string str to the output stream

abstract void write(char buffer[],int offset,int

numChars)

Write the subrange of numchars characters

from buffer beging of the offset to output

27

 stream

10. What is the significance of the CLASSPATH environment variable in creating/using a

package?[3]

CLASS PATH environment variable setting is used by java run time

system to know where to look for package that is created.

For example, consider the following package specification:

package MyPack

the class path must not include MyPack, itself.

It must simply specify the path to MyPack. For example, in a Windows

environment, if the path to MyPack is

C:\MyPrograms\Java\MyPack

Then the class path to MyPack is

C:\MyPrograms\Java

Example:

package MyPack;

class Demo

{

…….

…….

}

class classpathdemo

{

public static void main(String args[])

{

Demo obj=new Demo();

………

}

}

Call this file classpathdemo.java and put it in a directory called MyPack.

Next, compile the file. Make sure that the resulting .class file is also in the MyPack

directory.

Then, try executing the classpathdemo class, using the following command line:

java MyPack.classpathdemo

28

Remember, you will need to be in the directory above MyPack when you

execute this command.

11. What is Console class? What is its use in java? [2]

 Console class is used to read from and write to the console.

 It implements the Flushable interface

 Console supplies no constructor ,a console object is obtained by calling System.console()

Syntax:

If the console is available,its reference is returned other wise null is returned.

Below table gives the methods provided by Console class

Method Description

public String readLine() used to read a single line of text from the

console

public String readLine(String fmt,Object... args) it provides a formatted prompt then reads

the single line of text from the console.

public char[] readPassword() used to read password that is not being

displayed on the console.

public char[] readPassword(String fmt,Object...

args)

it provides a formatted prompt then reads

the password that is not being displayed on

the console.

void flush() Causes buffered output to be written

physically to the console

Console printf(String fmtString,Object …args) Writes args to the console using the format

specified by fmtstring

Reader reader() Returns a reference to Reader connected to

the console

PrintWriter writer() Returns a reference to the Writer connected

to the console

public static Console console ()

29

Example on Reading Console Input And Writing Console Output

import java.io.*;

class ConsoleDemo

{

public static void main(String args[])

{

String str;

Console con;

con=System.Console();

if (con==null)

return;

str=con.readLine(“Enter a string:”);

con.printf(“Here is ur string: %s”,str);

}

}

Output:

Enter a string: Have a nice day

Here is ur string: Have a nice day

12. What is the use of auto boxing in java? Explain. [3]

The automatic conversion of primitive data types into its equivalent Wrapper type is known as

boxing and opposite operation is known as unboxing.

This is the new feature of Java5. So java programmer doesn't need to write the conversion code.

Advantage of Autoboxing and Unboxing:

No need of conversion between primitives and Wrappers manually so less coding is required.

30

Simple Example of Autoboxing in java

class BoxingDemo

{

public static void main(String args[])

{

int a=50;

Integer a2=new Integer(a);//Boxing

Integer a3=5;//Boxing

}

Output:

50 5

System.out.println(a2+" "+a3);

}

31

UNIT-III

1. What are the advantages of multithreading? [2]

Multithreading allows the execution of multiple parts of a program at the same time. These parts

are known as threads and are lightweight processes available within the process. So

multithreading leads to maximum utilization of the CPU by multitasking.Some of the benefits of

multithreaded programming are given as follows –

 Resource Sharing

All the threads of a process share its resources such as memory, data, files etc. A single

application can have different threads within the same address space using resource

sharing.

 Responsiveness

Program responsiveness allows a program to run even if part of it is blocked using

multithreading. This can also be done if the process is performing a lengthy operation.

For example - A web browser with multithreading can use one thread for user contact and

another for image loading at the same time.

 Utilization of Multiprocessor Architecture

In a multiprocessor architecture, each thread can run on a different processor in parallel

using multithreading. This increases concurrency of the system. This is in direct contrast

to a single processor system, where only one process or thread can run on a processor at a

time.

 Economy

It is more economical to use threads as they share the process resources. Comparatively,

it is more expensive and time-consuming to create processes as they require more

memory and resources. The overhead for process creation and management is much

higher than thread creation and management.

2. Explain the types of exceptions. [3]

 Checked Exception

The exception that can be predicted by the programmer.The classes that extend Throwable class

except RuntimeException and Error are known as checked exceptions

e.g.IOException, SQLException etc. Checked exceptions are checked at compile-time.

 Unchecked Exception

Unchecked exceptions are the class that extends RuntimeException. Unchecked exception are

ignored at compile time.

Example :ArithmeticException, NullPointerException, Array Index out of Bound exception.

Unchecked exceptions are checked at runtime.

 Error

Errors are typically ignored in code because you can rarely do anything about an error.For

example if stack overflow occurs, an error will arise. This type of error is not possible handle in

code. Error is irrecoverable

e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

3.Difference between process and thread

BASIS FOR

COMPARISON

PROCESS

THREAD

Basic An executing program is called a

process.

A thread is a small part of a process.

Address Space Every process has its separate address

space.

All the threads of a process share t

same address space cooperatively

that of a process.

he

as

Multitasking Process-based multitasking allows a

computer to run two or more than two

programs concurrently.

Thread-based multitasking allows

single program to run two or mo

threads concurrently.

a

re

Communication Communication between two processes

is expensive and limited.

Communication between two threads

is less expensive as compared

process.

to

Switching Context switching from one process to

another process is expensive.

Context switching from one thread

another thread is less expensive

to

as

32

BASIS FOR

COMPARISON

PROCESS

THREAD

compared to process.

Components A process has its own address space,

global variables, signal handlers, open

files, child processes, accounting

information.

A thread has its own register, stat

stack, program counter.

e,

Substitute Process are also called heavyweight task. Thread are also called lightweight tas k.

Control Process-based multitasking is not under

the control of Java.

Thread-based multitasking is under t

control of Java.

he

Example You are working on text editor it refers

to the execution of a process.

You are printing a file from text edit

while working on it that resembles t

execution of a thread in the process.

or

he

4. Explain how multiple catch statement works

Multiple catch blocks:

A try block can be followed by multiple catch blocks. You can have any number of catch blocks

after a single try block.If an exception occurs in the guarded code the exception is passed to the

first catch block in the list. If the exception type of exception, matches with the first catch block

it gets caught, if not the exception is passed down to the next catch block. This continue until

the exception is caught or falls through all catches.

Example for Multiple Catch blocks

class Excep {

public static void main(String[] args)

{

try {

int arr[]={1,2};

arr[2]=3/0;

}

catch(ArithmeticExceptionae)

{

System.out.println("divide by zero");

33

34

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("array index out of bound exception");

}

}

}

Output :

divide by zero

5. List the thread states.

Ans:Life cycle of a Thread

1. New : A thread begins its life cycle in the new state. It remains in this state until the

start() method is called on it.

2. Runnable : After invocation of start() method on new thread, the thread becomes

runnable.

3. Running : A method is in running thread if the thread scheduler has selected it.

4. Blocking : A thread is waiting for another thread to perform a task(such as sleep , I/O

operations, block suspend, wait) . In this stage the thread is still alive.

5. Terminated : A thread enter the terminated state when it complete its task.

35

6. What keywords are essential in handling user-defined exception

In java, exception handling is done using five keywords,

1. try

2. catch

3. throw

4. throws

5. finally

Exception handling is done by transferring the execution of a program to an appropriate

exception handler when exception occurs.

Example demonstrating Keyword of Exception handling

import java.io.*;

public class ThrowExample {

void mymethod(int num)throws IOException, ClassNotFoundException{

if(num==1)

throw new IOException("Exception Message1");

else

throw new ClassNotFoundException("Exception Message2");
}

}

class Demo

{

public static void main(String args[]){

try{

ThrowExample obj=new ThrowExample();

obj.mymethod(1);

}

catch(Exception ex)

{

System.out.println(ex);

}

finally

{

system.out.println(“message from finally block”);

}

}

36

7. Differentiate between error and exception

ERRORS EXCEPTIONS

Recovering from Error is not possible.

We can recover from exceptions by either using try-
catch block or throwing exceptions back to caller.

All errors in java are unchecked type.

Exceptions include both checked as well as

unchecked type.

Errors are mostly caused by the

environment in which program is running.

Program itself is responsible for causing exceptions.

Errors occur at runtime and not known to

the compiler.

All exceptions occurs at runtime but checked

exceptions are known to compiler while unchecked

are not.

They are defined in java.lang.Error

package.

They are defined in java.lang.Exception package

Examples :

java.lang.StackOverflowError,

java.lang.OutOfMemoryError

Examples :

Checked Exceptions : SQLException, IOException

Unchecked Exceptions :

ArrayIndexOutOfBoundException,

NullPointerException, ArithmeticException.

8. How to assign priorities to threads?

Ans:

We can assign priority to a thread by using following function:

Threadobject.setPriority(TheardPriority)

Example on Thread Priority

class Multi implements Runnable{

public void run() {

System.out.println("running thread name is:"+Thread.currentThread().getName());
System.out.println("running thread priority is:"+Thread.currentThread().getPriority());

}

public static void main(String args[]) {

Multi m1=new Multi ();

Multi m2=new Multi ();

37

m1.setPriority(Thread.MIN_PRIORITY);

m2.setPriority(Thread.MAX_PRIORITY);

m1.start();

m2.start();

}

}

9. How does Java support inter thread communication? [2]

Inter-thread communication or Co-operation is all about allowing synchronized threads to

communicate with each other.

Cooperation (Inter-thread communication) is a mechanism in which a thread is paused running

in its critical section and another thread is allowed to enter (or lock) in the same critical section

to be executed.It is implemented by following methods of Object class:

 wait()

 notify()

 notifyAll()

1) wait() method

Causes current thread to release the lock and wait until either another thread invokes the

notify() method or the notifyAll() method for this object, or a specified amount of time has

elapsed.

public final void wait()throws InterruptedException---- waits until object is notified.

public final void wait(long timeout)throws InterruptedException-----waits for the

specified amount of time.

2) notify() method

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting

on this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at

the discretion of the implementation. Syntax:

public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor. Syntax:

public final void notifyAll()

38

10. List any four unchecked exception

Exception Description

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible

type.

ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an

unlocked thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with the current

thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

StringIndexOutOfBounds UnsupportedOperationException

An unsupported operation was encountered.

39

UNIT-IV

1. What is the difference between array and vector?

Concept name array vector
Resize Length of the array is fixed i.e once

t is created we cannot added or

emove elements

A vector is a resizable – array

which works by reallocating

storage

Sychronized Array is not Sychronized Vector is Sychronized

Performance Array is faster Vector is relatively slow

Storage It does not reserve any additional
storage

Vector reserves O(n) additional
storage

trimToSize() Array doesnot have trimToSize() Vector uses trimToSize()
To remove additional storage

Elements It can hold both primitives and java

objects

It can hold only java objects

size It uses length property to store
length.

It uses size() method to get size
.

Dimensions java support single and multi
dimensional array

Vectors doesnot have a concept
of dimensions,but it supports
vector of Vectors

Generics It does not support Generics It support Generics to ensure
type safety

2. List the hash table constructors.

Hashtable stores key/value pairs in a hash table. However, neither keys nor values can

be null. When using a Hashtable, you specify an object that is used as a key, and the value that

you want linked to that key. The key is then hashed, and the resulting hash code is used as the

index at which the value is stored within the table.

Syntax: class Hashtable<K, V>

Here, K specifies the type of keys, and V specifies the type of values.

The Hashtable constructors are::

Syntax:

Hashtable();

Hashtable(int size);

Hashtable(int size, float fillRatio);

Hashtable(Map<? extends K, ? extends V> m);

40

3. Explain the methods defined by Vector.

Method defined by Vector.

Method Description

int size() It returns the size of the Vector

int capacity() It returns the capacity of the Vector

addElement(element); It add an element to the Vector

firstElement() It returns the first element in Vector

lastElement() It returns the last element in Vector

4. Explain the use of String tokenizer with an example***

Ans:The string tokenizer class allows an application to break a string into tokens.

The StringTokenizer methods do not distinguish among identifiers, numbers, and quoted

strings, nor do they recognize and skip comments.

The set of delimiters (the characters that separate tokens) may be specified either at creation time

or on a per-token basis.

Example:

import java.util.StringTokenizer;

class StringTokenizerDemo

{

public static void main(String arg[])

{

StringTokenizer st1 = new StringTokenizer("Welcome to CMREC" + " Campus."); //

LINE A

while (st1.hasMoreTokens()) {

System.out.println(st1.nextToken());

}

System.out.print(" --------\n");

StringTokenizer st2 = new StringTokenizer("It's an,Education," + "Website." , ","); //

LINE B

while (st2.hasMoreTokens()) {

41

System.out.println(st2.nextToken());

}

System.out.print(" --------\n");

StringTokenizer st3 = new StringTokenizer("Learn~programming~with Java.", "~", true); //

LINE C

while (st3.hasMoreTokens()) {

System.out.println(st3.nextToken());

}

}

}

5. Write about any 3 methods defined by Iterator

Iterator interface provides the facility of iterating the elements in forward direction only.

There are only three methods in the Iterator interface. They are:

1. public boolean hasNext() it returns true if iterator has more elements.

2. public object next() it returns the element and moves the cursor pointer to the next

element.

3. public void remove() it removes the last elements returned by the iterator. It is rarely used

Example program:

import java.util.*;

class TestCollection1{

public static void main(String args[]){

ArrayList<String> list1=new ArrayList<String>();//Creating arraylist

list1.add("Ravi");//Adding object in arraylist

list1.add("Vijay");

list1.add("Giri");

list1.add("Ajay");

System.out.println(“arraylist elements using Iterator interface”);
//Traversing list through Iterator

Iterator itr=list1.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

}

}

6. List the functions of Stack class.

Stack is a subclass of Vector that implements a standard “last-in, first-out”

stack. Stack only defines the default constructor, which creates an empty stack. With the release

of JDK 5, Stack was retrofitted for generics and is declared as shown here:

Syntax: class Stack<E>

42

Here, E specifies the type of element stored in the stack.

Stack includes all the methods defined by Vector and adds several of its own, shown in

belowTable.

Method Description

boolean empty() Returns true if the stack is empty, and returns false if the stack

contains elements.

E peek() Returns the element on the top of the stack, but does not remove it

E pop() Returns the element on the top of the stack, removing it in the :

process

E push(E element) Pushes element onto the stack. element is also returned.

int search(Object

element)

Searches for element in the stack. If found, its offset from the top of

the stack is returned. Otherwise, –1 is returned.

7. What is the use of Iterator class?

Iterator:

It is a universal iterator as we can apply it to any Collection object. By using Iterator, we can

perform both read and remove operations. It is improved version of Enumeration with

additional functionality of remove-ability of a element.

Iterator must be used whenever we want to enumerate elements in all Collection framework

implemented interfaces like Set, List, Queue, Deque and also in all implemented classes of Map

interface. Iterator is the only cursor available for entire collection framework.

Iterator object can be created by calling iterator() method present in Collection interface.

Java program to demonstrate Iterator

import java.util.ArrayList;

import java.util.Iterator;

public class Test

{

public static void main(String[] args)

{

ArrayList al = new ArrayList();

for (int i = 0; i < 10; i++)

al.add(i);

System.out.println(al);

https://www.geeksforgeeks.org/iterators-in-java/#Iterator

43

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

0 1 2 3 4 5 6 7 8 9

[0, 2, 4, 6, 8]

// at beginning itr(cursor) will point to

// index just before the first element in al

Iterator itr = al.iterator();

// checking the next element availabilty

while (itr.hasNext())

{

// moving cursor to next element

int i = (Integer)itr.next();

// getting even elements one by one

System.out.print(i + " ");

// Removing odd elements

if (i % 2 != 0)

itr.remove();

}

System.out.println();

System.out.println(al);

}

}

Output:

8. What is the benefit of Generics in Collections Framework?

Java 1.5 came with Generics and all collection interfaces and implementations use it

heavily. Generics allow us to provide the type of Object that a collection can contain, so

if you try to add any element of other type it throws compile time error.

This avoids ClassCastException at Runtime because you will get the error at

compilation. Also Generics make code clean since we don’t need to use casting

and instanceof operator. It also adds up to runtime benefit because the bytecode

instructions that do type checking are not generated.

44

9. Differentiate between Enumeration and Iterator interface.

BASIS FOR

COMPARISON

ITERATOR

ENUMERATION

Basic Iterator is a universal cursor as it

is applicable for all the collection

classes.

Enumeration is not a universal cursor

as it applies only to legacy classes.

Access Using Iterator you can read and

remove the elements in the

collection.

Using Enumeration you can only

read the elements in the collection.

Methods public boolean hasnext();

public objects next();

public void remove();

public boolean hasMoreElements();

public object nextElement();

Limitation Iterator is a unidirectional

forward access cursor.

Iterator can not replace any

element in the collection.

Iterator can not add any new

element in the collection.

Enumeration is unidirectional

forward access cursor.

Enumeration support only legacy

classes.

Enumeration has only read-only

access to the elements in a collection.

Overcome To overcome the limitations of

Iterator you must opt for

ListIterator.

To overcome the limitations of

Enumeration you must opt for

Iterator.

10. Make a comparison of List, array and ArrayList.

Ans:

Array: Simple fixed sized arrays that we create in Java, like below

int arr[] = new int[10]

ArrayList : Dynamic sized arrays in Java that implement List interface.

ArrayList<Type> arrL = new ArrayList<Type>();

Here Type is the type of elements in ArrayList to be created

Differences between List ,Array and ArrayList

Array

 An array is basic functionality provided by Java and it fixed length.

 Array provide both direct and sequential access to elements

 Array is a static memory allocation so there is a wastage of memory

 Array can sote only objects

45

 Array is a static memory allocation so there is a wastage of memory

 Insertion and deletion is a time consummation process in array

 All the cells in array should be same data type

List and ArrayList

 List and ArrayList is part of collection framework in Java and have variable

length.

 ArrayList has a set of methods to access elements and modify them.

 List provide only sequential access to elements

 List dynamic allocation so no wastage of memory

 Arraylist can store primitive datatype and Object.

 Insertion and deletion is not time consummation process in arraylist and list

 a single cell can be divided into many parts each having info of different data

type. but the last necessarily needs to be the pointer to the next cell

// A Java program to demonstrate differences between array and ArrayList

import java.util.ArrayList;

import java.util.Arrays;

class Test

{

public static void main(String args[])

{

/* Normal Array */

int[] arr = new int[2];

arr[0] = 1;

arr[1] = 2;

System.out.println(arr[0]);

/*............ArrayList */

// Create an arrayList with initial capacity 2

ArrayList<Integer> arrL = new ArrayList<Integer>(2);

// Add elements to ArrayList
arrL.add(1);

arrL.add(2);

// Access elements of ArrayList

System.out.println(arrL.get(0));

}

}

46

11. What is the significance of Legacy class? Give example.

Java only defined several classes and interfaces that provide methods for storing

objects. When Collections framework were added in J2SE 1.2, the original classes were

reengineered to support the collection interface. These classes are also known as Legacy

classes.

Legacy Classes - Java Collections

 Dictionary.

 HashTable.

 Properties.

 Stack.

 Vector.

.

12. What is a Java Priority queue?

A PriorityQueue is used when the objects are supposed to be processed based on the

priority. It is known that a queue follows First-In-First-Out algorithm, but sometimes the

elements of the queue are needed to be processed according to the priority, that’s when

the PriorityQueue comes into play. The PriorityQueue is based on the priority heap.

Mostly used Constructors of PriorityQueue class

 PriorityQueue(): Creates a PriorityQueue with the default initial capacity (11) that

orders its elements according to their natural ordering.

 PriorityQueue(Collection<E> c): Creates a PriorityQueue containing the elements in

the specified collection.

Methods in PriorityQueue class:
o boolean add(E element): This method inserts the specified element into this

priority queue.

o public remove(): This method removes a single instance of the specified element
from this queue, if it is present

o public poll(): This method retrieves and removes the head of this queue, or
returns null if this queue is empty.

o public peek(): This method retrieves, but does not remove, the head of this
queue, or returns null if this queue is empty.

o Iterator iterator(): Returns an iterator over the elements in this queue.
o boolean contains(Object o): This method returns true if this queue contains the

specified element

o void clear(): This method is used to remove all of the contents of the priority
queue.

o boolean offer(E e): This method is used to insert a specific element into the
priority queue.

o int size(): The method is used to return the number of elements present in the set.
o toArray(): This method is used to return an array containing all of the elements in

this queue.

o Comparator comparator(): The method is used to return the comparator that
can be used to order the elements of the queue

13.What is a Collection Class? Give an example.

Collections in java is a framework that provides an architecture to store and manipulate the

group of objects.

All the operations that you perform on a data such as searching, sorting, insertion, manipulation,

deletion etc. can be performed by Java Collections.

Java Collection simply means a single unit of objects. Java Collection framework provides

many interfaces (Set, List, Queue, Deque etc.) and classes (ArrayList, Vector, LinkedList,

PriorityQueue, HashSet, LinkedHashSet, TreeSet etc).

Each collection classes provide iterator() method to return an iterator.

Methods of Iterator:

Method Description

boolean hasNext() Returns true if there are more elements in the collection. Otherwise, returns false.

E next() Returns the next element present in the collection. Throws

NoSuchElementException if there is not a next element.

void remove() Removes the current element. Throws IllegalStateException if an attempt is made

to call remove() method that is not preceded by a call to next() method.

47

48

UNIT-V

1. What are the containers available in swing? [2M]

Abstract Windowing Toolkit (AWT): Abstract Windowing Toolkit (AWT) is used for GUI

programming in java.

AWT Container Hierarchy:

Container:

The Container is a component in AWT that can contain another components like buttons,

textfields, labels etc. The classes that extends Container class are known as container.

49

2. ***Compare Applets with application programs. [3M]

FEATURE APPLET APPLICATION

main() method Not Present present

Nature

Requires some third party

tool help like a browser to

execute

Called as stand-alone application as

application can be executed from

command prompt

Restrictions

cannot access any thing on

the system except

browser’s services

Can access any data or software

available on the system

Security

Requires highest security

for the system as they are

untrusted

Does not require any security

Execution

Applet is portable and can

be executed by any JAVA

supported browser

Need JDK, JRE, JVM installed on client

machine

Creation

Applets are created by

extending the

java.applet.Applet

Applications are created by writing

public static void main(String[] s)

method

Methods

Applet application has 5

methods which will be

automatically invoked on

occurance of specific event

Application has a single start point

which is main method

Example

Example:
Example:public class MyClass

50

import java.awt.*;

import java.applet.*;

public class Myclass

extends Applet

{

public void init() { }

public void start() { }

public void stop() {}

public void destroy() {}

public void

paint(Graphics g) {}

}

{

public static void main(String args[]) {}

}

3. what is the use of LayOut manager

A container has a so‐called layout manager to arrange its components. The layout managers

provide a level of abstraction to map your user interface on all windowing systems, so that the

layout can be platform‐independent.

AWT provides the following layout managers ﴾in package java.awt﴿:

 Flow Layout

 Border Layout

 Grid Layout

 Card Layout

 Grid Bag Layout

Container's setLayout() method

51

A container has a setLayout() method to set its layout manager:

// java.awt.Container

public void setLayout(LayoutManager mgr)

To set up the layout of a Container (such as Frame, JFrame, Panel, or JPanel), you have to:

1. Construct an instance of the chosen layout object, via new and constructor, e.g., new

FlowLayout())

2. Invoke the setLayout() method of the Container, with the layout object created as the

argument;

3. Place the GUI components into the Container using the add() method in the correct order;

or into the correct zones.

4. explain about life cycle of Applet

Java Applet

Applet is a special type of program that is embedded in the webpage to generate the

dynamic content. It runs inside the browser and works at client side.

Lifecycle of Java Applet

1. Applet is initialized.

2. Applet is started.

3. Applet is painted.

4. Applet is stopped.

5. Applet is destroyed.

52

5. What are the merits of swing components over AWT? [2]

No. Java AWT Java Swing

1) AWT components are platform-dependent.
Java swing components are platform-

independent.

2) AWT components are heavyweight. Swing components are lightweight.

3) AWT doesn't support pluggable look and feel.
Swing supports pluggable look and

feel.

4)

AWT provides less components than Swing.

Swing provides more powerful

components such as tables, lists,

scrollpanes, colorchooser, tabbedpane

etc.

5)

AWT doesn't follows MVC(Model View Controller)

where model represents data, view represents presentation

and controller acts as an interface between model and view.

Swing follows MVC.

6. ***What is an adapter class? What is its significance? List the adapter classes. [3]

Java adapter classes provide the default implementation of listener interfaces. If you

inherit the adapter class, you will not be forced to provide the implementation of all the methods

of listener interfaces. So it saves code.

The adapter classes are found in java.awt.event, java.awt.dnd and javax.swing.event packages.

The Adapter classes with their corresponding listener interfaces are given below

java.awt.event Adapter classes:

Adapter class Listener interface

WindowAdapter WindowListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

FocusAdapter FocusListener

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

HierarchyBoundsAdapter HierarchyBoundsListener

java.awt.dnd Adapter classes

53

Adapter class Listener interface

DragSourceAdapter DragSourceListener

DragTargetAdapter DragTargetListener

javax.swing.event Adapter classes:

Adapter class Listener interface

MouseInputAdapter MouseInputListener

InternalFrameAdapter InternalFrameListener

7. What are the sources for item event? [2]

JButton

JToggle Button

JCheckBox

JRadio Button

JTabbed Pane

JScroll Pane

JList

JComboBox

Swing Menus

Dialogs

8. Give the hierarchy for swing components. [3]

The hierarchy of java swing API is given below.

54

9. Give the subclasses of JButton class.

Subclasses:

1. BasicArrowButton,

2.MetalComboBoxButton

BasicArrowButton:

public class BasicArrowButton extends JButton implements SwingConstants MetalComboBoxButton

Constructors

BasicArrowButton(int direction)--Creates a BasicArrowButton whose arrow is drawn in the specified
direction.

BasicArrowButton(int direction, Color background, Color shadow, Color darkShadow, Color
highlight)--Creates a BasicArrowButton whose arrow is drawn in the specified direction and with
the specified colors.

Modifier and Type Method Description

int getDirection() Returns the direction of the arrow.

Dimension getMaximumSize() Returns the maximum size of

the BasicArrowButton.

Dimension getMinimumSize() Returns the minimum size of

the BasicArrowButton.

Dimension getPreferredSize() Returns the preferred size of

the BasicArrowButton.

boolean isFocusTraversable() Returns whether the arrow button should get

the focus.

void paintTriangle(Graphics g, int x, int y,

int size, int direction,

boolean isEnabled)

Paints a triangle.

void setDirection(int direction) Sets the direction of the arrow.

2.MetalComboBoxButton

Constructors

MetalComboBoxButton(JComboBox cb, Icon i, boolean onlyIcon, CellRendererPane pane,

JList list)

MetalComboBoxButton(JComboBox cb, Icon i, CellRendererPane pane, JList list)

55

Methods

Modifier and Type Method and Description

JComboBox getComboBox()

Icon getComboIcon()

Dimension getMinimumSize()

If the minimum size has been set to a non-null value just returns it.

boolean isFocusTraversable()

Returns whether this Component can become the focus owner.

boolean isIconOnly()

void paintComponent(Graphics g)

Calls the UI delegate's paint method, if the UI delegate is non-null.

void setComboBox(JComboBox cb)

void setComboIcon(Icon i)

void setEnabled(boolean enabled)
Enables (or disables) the button.

http://cr.openjdk.java.net/~iris/se/12/spec/edr/java-se-12-edr-spec-01/api/java.desktop/javax/swing/plaf/basic/BasicArrowButton.html#getDirection()
http://cr.openjdk.java.net/~iris/se/12/spec/edr/java-se-12-edr-spec-01/api/java.desktop/java/awt/Dimension.html
http://cr.openjdk.java.net/~iris/se/12/spec/edr/java-se-12-edr-spec-01/api/java.desktop/javax/swing/plaf/basic/BasicArrowButton.html#getMaximumSize()
http://cr.openjdk.java.net/~iris/se/12/spec/edr/java-se-12-edr-spec-01/api/java.desktop/java/awt/Dimension.html
http://cr.openjdk.java.net/~iris/se/12/spec/edr/java-se-12-edr-spec-01/api/java.desktop/javax/swing/plaf/basic/BasicArrowButton.html#getMinimumSize()
http://cr.openjdk.java.net/~iris/se/12/spec/edr/java-se-12-edr-spec-01/api/java.desktop/java/awt/Dimension.html
http://cr.openjdk.java.net/~iris/se/12/spec/edr/java-se-12-edr-spec-01/api/java.desktop/javax/swing/plaf/basic/BasicArrowButton.html#getPreferredSize()
http://cr.openjdk.java.net/~iris/se/12/spec/edr/java-se-12-edr-spec-01/api/java.desktop/javax/swing/plaf/basic/BasicArrowButton.html#isFocusTraversable()
http://cr.openjdk.java.net/~iris/se/12/spec/edr/java-se-12-edr-spec-01/api/java.desktop/javax/swing/plaf/basic/BasicArrowButton.html#paintTriangle(java.awt.Graphics%2Cint%2Cint%2Cint%2Cint%2Cboolean)
http://cr.openjdk.java.net/~iris/se/12/spec/edr/java-se-12-edr-spec-01/api/java.desktop/java/awt/Graphics.html
http://cr.openjdk.java.net/~iris/se/12/spec/edr/java-se-12-edr-spec-01/api/java.desktop/javax/swing/plaf/basic/BasicArrowButton.html#setDirection(int)
https://docs.oracle.com/javase/7/docs/api/javax/swing/JComboBox.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/metal/MetalComboBoxButton.html#getComboBox()
https://docs.oracle.com/javase/7/docs/api/javax/swing/Icon.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/metal/MetalComboBoxButton.html#getComboIcon()
https://docs.oracle.com/javase/7/docs/api/java/awt/Dimension.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/metal/MetalComboBoxButton.html#getMinimumSize()
https://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/metal/MetalComboBoxButton.html#isFocusTraversable()
https://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/metal/MetalComboBoxButton.html#isIconOnly()
https://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/metal/MetalComboBoxButton.html#paintComponent(java.awt.Graphics)
https://docs.oracle.com/javase/7/docs/api/java/awt/Graphics.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/metal/MetalComboBoxButton.html#setComboBox(javax.swing.JComboBox)
https://docs.oracle.com/javase/7/docs/api/javax/swing/JComboBox.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/metal/MetalComboBoxButton.html#setComboIcon(javax.swing.Icon)
https://docs.oracle.com/javase/7/docs/api/javax/swing/Icon.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/metal/MetalComboBoxButton.html#setEnabled(boolean)

56

void setIconOnly(boolean isIconOnly)

10.Differentiate between grid layout and border layout managers.

BorderLayout - Lays out components in BorderLayout.NORTH, EAST, SOUTH, WEST, and CENTER

sections.

bord = new BorderLayout(); Creates BorderLayout. Widgets

added with constraint to tell where.

bord = new BorderLayout(h, v); Creates BorderLayout with horizonal
and vertical gaps sizes in pixels.

 p.add(widget, pos); Adds widget to one of the 5 border

layout regions, pos (see list above).

GridLayout - Lays out components in equal sized rectangular grid, added r-t-l, top-to-bottom.

grid = new GridLayout(r, c); Creates GridLayout with specified

rows and columns.

grid = new GridLayout(r,c,h,v); As above but also specifies

horizontal and vertical space

between cells.

 p.add(widget); Adds widget to the next left-to-right,

top-to-bottom cell.

GridLayout

 Arranges components into rows and columns

 A GridLayout puts all the components in a rectangular grid and is divided into equal-sized

rectangles and each component is placed inside a rectangle

 A GridLayout is constructed with parameters

 When a component is added, it is placed in the next position in the grid, which is filled row by

row, from the first to last column

BorderLayout

 Arranges components into five areas: North, South, East, West, and Center

 The class BorderLayout arranges the components to fit in the five regions: east, west, north, south

and center. Each region is can contain only one component and each component in each region is

identified by the corresponding constant NORTH, SOUTH, EAST, WEST, and CENTER.

 A BorderLayout can be constructed with no parameters

 We can add a single component at each of the four compass directions (specified by the Strings
"North", "South", "East", or "West", as well as at the "Center". Of course, the component we add
can be a container, which contains multiple components (managed by another layout manager).

https://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/metal/MetalComboBoxButton.html#setIconOnly(boolean)

57

11. What are the limitations of AWT? [2]

limitations of AWT :The AWT defines a basic set of controls, windows, and dialog boxes that

support a usable, but limited graphical interface. One reason for the limited nature of the AWT

is that it translates its various visual components into their corresponding, platform-specific

equivalents or peers. This means that the look and feel of a component is defined by the

platform, not by java. Because the AWT components use native code resources, they are

referred to as heavy weight.The use of native peers led to several problems. First, because of

variations between operating systems, a component might look, or even act, differently on

different

platforms. This variability threatened java’s philosophy: write once, run anywhere.Second, the

look and feel of each component was fixed and could not be changed. Third,the use of

heavyweight components caused some frustrating restrictions.

Summary on limitations of AWT

AWT supports limited number of GUI components

AWT component are Heavy weight components

AWT components are developed by using platform specific code

AWT components behaves differently in different Operating Systems.

AWT components is converted by the native code of the Operating System
12. Why do applet classes need to be declared as public? [3]

Applet classes need to be declared as a public becomes the applet classes are access from

HTML document that means from outside code. Otherwise, an applet will not be accessible

from an outside code i.e an HTML

58

13. Give the AWT hierarchy. [2]

AWT Container Hierarchy:

Container:

The Container is a component in AWT that can contain another components like buttons,

textfields, labels etc. The classes that extends Container class are known as container.

Window:

The window is the container that have no borders and menubars. You must use frame, dialog or

59

another window for creating a window.

Panel:

The Panel is the container that doesn't contain title bar and MenuBars. It can have other

components like button, textfield etc.

Frame:

The Frame is the container that contain title bar and can have MenuBars. It can have other

components like button, textfield etc.

There are two ways to create a frame:

1. By extending Frame class (inheritance)

2. By creating the object of Frame class (association)

14. What are the various classes used in creating a swing menu? [3]

JMenuBar, JMenu and JMenuItem

The JMenuBar class is used to display menubar on the window or frame. It may have several

menus.

The object of JMenu class is a pull down menu component which is displayed from the menu

bar. It inherits the JMenuItem class.

The object of JMenuItem class adds a simple labeled menu item. The items used in a menu must

belong to the JMenuItem or any of its subclass.

JMenuBar class declaration

public class JMenuBar extends JComponent implements MenuElement, Accessible

JMenu class declaration

public class JMenu extends JMenuItem implements MenuElement, Accessible

JMenuItem class declaration

public class JMenuItem extends AbstractButton implements Accessible, MenuElement

60

Example program to demonstrate SWING Menu
import javax.swing.*;

class MenuExample

{

JMenu menu, submenu;

JMenuItem i1, i2, i3, i4, i5;
MenuExample(){
JFrame f= new JFrame("Menu and MenuItem Example");

JMenuBar mb=new JMenuBar();

menu=new JMenu("Menu");
submenu=new JMenu("Sub Menu");

i1=new JMenuItem("Item 1");

i2=new JMenuItem("Item 2");

i3=new JMenuItem("Item 3");

i4=new JMenuItem("Item 4");
i5=new JMenuItem("Item 5");

menu.add(i1); menu.add(i2); menu.add(i3);

submenu.add(i4); submenu.add(i5);
menu.add(submenu);

mb.add(menu);

f.setJMenuBar(mb);
f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])
{

new MenuExample();
}}

Output:

61

15. What are the differences between JToggle buttion and Radio buttion? [2]

Toggle Button:

Toggles should be used to represent an action, like turning something on or off, or starting or stopping an

activity. It should be clear which state is on and which state is off. As the name suggest a button whose

state can be toggled from on to off or vice-versa. For example a Switch in your home to turn a particular

light on or off.

Toggle button has immediate effect on selection.

Radio Button:

Radio buttons should be used when the user can select one, and only one, option from a list of items. The

button should be circular and become filled in when it is selected. Its name comes from the concept of

buttons in Radio where for first station you press first button and for second station you press second

button and so forth. So you can choose from multiple options. But at a time only one will be selected.

Radio Button has effect only after pressing Submit button

62

14. What is Swing in Java? How it differs from Applet. [2]

Swing Applet

Swing is light weight Component. Applet is heavy weight Component.

Swing have look and feel according to user

view you can change look and feel using

UIManager.

Applet Does not provide this facility.

Swing uses for stand lone Applications,

Swing have main method to execute the

program.

Applet need HTML code for Run the

Applet.

Swing uses MVC Model view Controller. Applet not.

Swing have its own Layout like most

popular Box Layout.

Applet uses AWT Layouts like flowlayout.

Swing have some Thread rules. Applet doesn't have any rule.

To execute Swing no need any browser By

which we can create stand alone application

But Here we have to add container and

maintain all action control with in frame

container.

To execute Applet programe we should need

any one browser like Appletviewer, web

browser. Because Applet using browser

container to run and all action control with

in browser container.

Java swing components are platform-independent.

Swing components are lightweight.

Swing supports pluggable look and feel.

Swing provides more powerful components such as tables, lists, scrollpanes, colorchooser, tabbedpane

etc.

Swing follows MVC.

63

PART –B

UNIT WISE ESSAY QUESTION AND ANSWERS

UNIT-I

64

 1.Define inheritance: Explain the various forms of inheritance. How to prevent a class from

inheritance?

Defination: Inheritance is the mechanism of deriving new class from old one, old class is knows as

superclass and new class is known as subclass. The subclass inherits all of its instances variables and methods

defined by the superclass and it also adds its own unique elements. Thus we can say that subclass are

specialized version of superclass.

Forms of Inheritance:

 Specification inheritance

 Specialization inheritance

 Construction inheritance

 Extension inheritance

Specification inheritance:

 If the parent class is abstract, we often say that it is providing a specification for the child class, and

therefore it is specification inheritance (a variety of specialization inheritance).

Specialization inheritance:

The superclass just specifies which methods should be available but doesn't give code.

This is supported in java by interfaces and abstract methods

Construction inheritance

The superclass just specifies which methods should be available but doesn't give code.

This is supported in java by interfaces and abstract methods

Extension inheritance

The superclass is just used to provide behavior, but instances of the subclass don't really act like the

superclass. Violates substitutability. Exmample: defining Stack as a subclass of Vector. This is not clean --

better to define Stack as having a field that holds a vector

If a child class generalizes or extends the parent class by providing more functionality, but does not override

any method, we call it inheritance for generalization.

The child class doesn't change anything inherited from the parent, it simply adds new features.

Preventing a class from inheritance:

If a class is made as final it cannot be extended by another class

2.Write a program to demonstrate hierarchical and multiple inheritance using interfaces

final Class A

{

….}

Class B extends A //error since class A is final we can’t inherit it properties

{

….

}

65

Hierarchical Inheritance program:

class A

{

public void display()

{

System.out.println("I am in display method");

}

}

class B extends A

{

public void show()

{

System.out.println(" I am in Show method");

}

}

class C extends A

{

public void printing()

{

System.out.println("I am in printing method");

}

}

public class Demo

{

public static void main(String args[])

{

B ob=new B();

C oc=new C();

ob.display();//calling display()of Class A using B class object

oc.display();//calling display()of Class A using C class object

ob.show();

oc.printing();

}

}

Output:

66

Multiple Inheritance:

Multiple inheritance is not supported in case of class because of ambiguity. But it is supported in case of

interface because there is no ambiguity as implementation is provided by the implementation class.

Program:

interface Printable

 {

void print();

 }

interface Showable

 {

void show();

 }

class TestTnterface1 implements Printable, Showable

{

 public void print()

 {

 System.out.println("Hello");

 }

public void show()

 {

System.out.println("Welcome");

 }

 public static void main(String args[])

 {

 TestTnterface1 obj = new TestTnterface1();

 obj.print();

 obj.show();

 }

}

Output:

Hello

Welcome

3. Write the significance and internal Architecture of Java Virtual Machine(JVM),. Briefly explain

how Java is platform independent

Internal Architecture of JVM

JVM (Java Virtual Machine) is an abstract machine. It is a specification that provides runtime environment

in which java bytecode can be executed.

JVMs are available for many hardware and software platforms (i.e. JVM is platform dependent). It is:

67

1. A specification where working of Java Virtual Machine is

specified. But implementation provider is independent to

choose the algorithm. Its implementation has been provided

by Sun and other companies.

2. An implementationIts implementation is known as JRE

(Java Runtime Environment).

3. Runtime Instance Whenever you write java command on the

command prompt to run the java class, and instance of JVM

is created.

JVM provides definitions for the:

 Memory area

 Class file format

 Register set

 Garbage-collected heap

 Fatal error reporting etc.

Runtime Environment (JRE)

1. Classloader:Classloader is a subsystem of JVM that is used to load class files.

68

2. Class(Method) Area:Class(Method) Area stores per-class structures such as the runtime constant

pool, field and method data, the code for methods.

3. Heap:It is the runtime data area in which objects are allocated

4. Stack: Java Stack stores frames.It holds local variables and partial results, and plays a part in

method invocation and return.Each thread has a private JVM stack, created at the same time as

thread. A new frame is created each time a method is invoked. A frame is destroyed when its

method invocation completes.

5. Program Counter Register:PC (program counter) register. It contains the address of the Java

virtual machine instruction currently being executed.

6. Native Method Stack:It contains all the native methods used in the application

7. Execution Engine:It contains:

1) A virtual processor

2) Interpreter:Readbytecode stream then execute the instructions.

Just-In-Time(JIT) compiler:It is used to improve the performance.JIT compiles parts of the byte code that

have similar functionality at the same time, and hence reduces the amount of time needed for

compilation.Here the term compiler refers to a translator from the instruction set of a Java virtual machine

(JVM) to the instruction set of a specific CPU.

Java is platform independent:

 Java provides software-based platform. The Java platform differs from most other platforms in the

sense that it's a software-based platform that runs on top of other hardware-based platforms. It has

two components:

Runtime Environment

API(Application Programming Interface)

Java code can be run on multiple platforms e.g.Windows,Linux,SunSolaris,Mac/OS etc. Java code is

compiled by the compiler and converted into bytecode.This bytecode is a platform independent code

because it can be run on multiple platforms i.e. Write Once and Run Anywhere(WORA).

69

4. What are the drawbacks of procedural languages? Explain the need of object oriented

programming with suitable program.(0r) Write the Difference Between procedural oriented

languages and object oriented programming

POP (Procedure Oriented Programming)

POP is a programming language that follows a step-by-step approach to break down a task into

a collection of variables and routines (or subroutines) through a sequence of instructions. Each

step is carried out in order in a systematic manner so that a computer can understand what to do.

Disadvantages

POP (Procedure Oriented Programming)

 Global data are vulnerable(less security)

 Data can move freely within a program

 It is tough to verify the data position.

 Functions are action-oriented.

 Functions are not capable of relating to the elements of the problem.

 Real-world problems cannot be modelled.

 Parts of code are interdependent.

 One application code cannot be used in other application.

 Data is transferred by using the functions.

Basic of Object-Oriented Concepts (OOP)

Object-oriented Programming is a programming language that uses classes and objects to

create models based on the real world environment.

 Objects: It is considered as a variable of type class and an instance of a class.

 Class: It is a set of objects of similar type. A complete set of data and code of an object

creates an user-defined data type by using a class.

 Data abstraction and encapsulation: Abstraction is nothing but a method of hiding

background details and representing essential features. The encapsulation is a method of

packing the data and functions into a single unit.

 Inheritance: Inheritance is a technique of acquiring features of objects from one class to the

other class objects. In other words, it helps in deriving a new class from the existing one.

 Polymorphism: Polymorphism provides a method of creating multiple forms of a function

by using a single function name.

 Dynamic binding: It specifies that the code associated with a particular procedure is not

known until the moment of the call at run time.

 Message passing: This OOP concept enables interaction between different classes by

transmitting and receiving information.

BASIS FOR

POP

OOP

70

COMPARISON

Basic Procedure/Structure

oriented .

Object oriented.

Approach Top-down. Bottom-up.

Basis Main focus is on "how to

get the task done"

i.e. on the procedure or

structure of a program

.

Main focus is on 'data security'. Hence, only

objects are permitted to access the entities of a

class.

Division Large program is

divided into units

called functions.

Entire program is divided into objects.

Entity accessing

mode

No access specifier

observed.

Access specifier are "public", "private",

"protected".

Overloading or

Polymorphism

Neither it overload

functions nor

operators.

It overloads functions, constructors, and

operators.

Inheritance Their is no provision of

inheritance.

Inheritance achieved in three modes public

private and protected.

Data hiding &

security

There is no proper way of

hiding the data, so data is

insecure

Data is hidden in three modes public,

private, and protected. hence data security

increases.

Data sharing Global data is shared

among the functions in the

program.

Data is shared among the objects

through the member functions.

Friend functions or

friend classes

No concept of friend

function.

Classes or function can become a friend of

another class with the keyword "friend".

Note: "friend" keyword is used only in c++

Virtual classes or

virtual function

No concept of virtual

classes .

Concept of virtual function appear

during inheritance.

Example C, VB, FORTRAN,

Pascal

C++, JAVA, VB.NET, C#.NET.

71

5. Explain about various control statements

 A control statement works as a determiner for deciding the next task of the other statements whether

 to execute or not. An ‘If’ statement decides whether to execute a statement or which statement has to

 execute first between the two. In Java, the control statements are divided into three categories

 which are selection statements, iteration statements, and jump statements. A program can execute from top to

 bottom but if we use a control statement. We can set order for executing a program based on values

 and logic.

» Decision Making in Java

 Simple if Statement

 if…else Statement

 Nested if statement

 if...else if…else statement

 Switch statement

» Looping Statements in Java

 While

 Do…while

 For

 For-Each Loop

» Branching Statements in Java

 Break

 Continue

 Return

Decision Making in Java

Decision making statements are statements which decides what to execute and when. They are similar to

decision making in real time. Control flow statements control the flow of a program’s execution. Here flow

of execution will be based on state of a program. We have 4 decision making statements available in Java.

Simple if Statement :

https://mindmajix.com/control-statements-in-java#decision
https://mindmajix.com/control-statements-in-java#simple
https://mindmajix.com/control-statements-in-java#else
https://mindmajix.com/control-statements-in-java#nested
https://mindmajix.com/control-statements-in-java#if-else
https://mindmajix.com/control-statements-in-java#switch
https://mindmajix.com/control-statements-in-java#looping
https://mindmajix.com/control-statements-in-java#whilee
https://mindmajix.com/control-statements-in-java#do
https://mindmajix.com/control-statements-in-java#for
https://mindmajix.com/control-statements-in-java#loop
https://mindmajix.com/control-statements-in-java#branching
https://mindmajix.com/control-statements-in-java#break
https://mindmajix.com/control-statements-in-java#continue
https://mindmajix.com/control-statements-in-java#return

72

Simple if statement is the basic of decision-making statements in Java. It decides if certain amount of code

should be executed based on the condition.

Syntax:

Example:
class ifTest {

 public static void main(String args[]) {

 int x = 5;

 if (x > 10)

 System.out.println("Inside If");

 System.out.println("After if statement");

 }

}

Output:

After if statement

if…else Statement :

In if…else statement, if condition is true then statements in if block will be executed but if it comes out as

false then else block will be executed.

Syntax:

Example:

class ifelseTest {

 public static void main(String args[]) {

 int x = 9;

 if (x > 10)

if (condition)

{

Statemen 1; //if condition becomes true then this will be executed

}

 statement 2; //this will be executed irrespective of condition becomes

true or false

if (condition) {

Statemen 1; //if condition becomes true then this will be executed

}

73

 System.out.println("i is greater than 10");

 else

 System.out.println("i is less than 10");

 System.out.println("After if else statement");

 }

}

Output:

i is less than 10

After if else statement

Nested if statement :

Nested if statement is if inside an if block. It is same as normal if…else statement but they are written inside

another if…else statement.

Syntax:

Example:

class nestedifTest {

 public static void main(String args[]) {

 int x = 25;

 if (x > 10) {

 if (x%2==0)

 System.out.println("i is greater than 10 and even number");

 else

 System.out.println("i is greater than 10 and odd number");

 }

 else {

 System.out.println("i is less than 10");

 }

 System.out.println("After nested if statement");

 }

}

Output:
i is greater than 10 and odd number

After nested if statement

if (condition1)

 {

Statemen 1; //executed when condition1 is true

if (condition2)

 {

Statement 2; //executed when condition2 is true

 }

else

 {

 Statement 3; //executed when condition2 is false

 }

}

74

if…else statement :

if…else if statements will be used when we need to compare the value with more than 2 conditions. They

are executed from top to bottom approach. As soon as the code finds the matching condition, that block will

be executed. But if no condition is matching then the last else statement will be executed.

Syntax:

Example:
class ifelseifTest {

 public static void main(String args[]) {

 int x = 2;

 if (x > 10) {

 System.out.println("i is greater than 10");

 }

 else if (x <10)

 System.out.println("i is less than 10");

 }

 else {

 System.out.println("i is 10");

 }

 System.out.println("After if else if ladder statement");

 }

}

Output:
i is less than 10

After if else if ladder statement

Switch statement :

if (condition1) {

Statemen 1; //if condition1 becomes true then this will be executed

}

else if (condition2) {

 Statement 2; // if condition2 becomes true then this will be executed

}

....

....

else {

 Statement 3; //executed when no matching condition found

}

75

Java switch statement compares the value and executes one of the case blocks based on the condition. It is

same as if…else if ladder. Below are some points to consider while working with switch statements:

» case value must be of the same type as expression used in switch statement

» case value must be a constant or literal. It doesn’t allow variables

» case values should be unique. If it is duplicate, then program will give compile time error

Let us understand it through one example.

class switchDemo{

 public static void main(String args[]) {

 int i=2;

 switch(i)

{

 case 0:

 System.out.println("i is 0");

 break;

 case 1:

 System.out.println("i is 1");

 break;

 case 2:

 System.out.println("i is 2");

 break;

 case 3:

 System.out.println("i is 3");

 break;

 case 4:

 System.out.println("i is 4");

 break;

 default:

 System.out.println("i is not in the list");

 break;

 }

}

}

Output:

i is 2

76

Looping Statements in Java :

Looping statements are the statements which execute a block of code repeatedly until some condition meet

to the criteria. Loops can be considered as repeating if statements. There are 3 types of loops available in

Java.

While :

While loops are simplest kind of loop. It checks and evaluates the condition and if it is true then executes the

body of loop. This is repeated until the condition becomes false. Condition in while loop must be given as a

Boolean expression. If int or string is used instead, compile will give the error.

Syntax:

Example:
class whileLoopTest

{

 public static void main(String args[])

{

 int j = 1;

 while (j <= 10) {

 System.out.println(j);

 j = j+2;

 }

 }

}

Output:
1 3 5 7 9

Initialization;

 while (condition)

 {

 statement1;

increment/decrement;

 }

77

Do…while :

Do…while works same as while loop. It has only one difference that in do…while, condition is checked

after the execution of the loop body. That is why this loop is considered as exit control loop. In do…while

loop, body of loop will be executed at least once before checking the condition

Syntax:

Example:

class dowhileLoopTest {

 public static void main(String args[]) {

 int j = 10;

 do {

 System.out.println(j);

 j = j+1;

 } while (j <= 10) ;

 }

}

Output: 10

For Statement :

It is the most common and widely used loop in Java. It is the easiest way to construct a loop structure in

code as initialization of a variable, a condition and increment/decrement are declared only in a single line of

code. It is easy to debug structure in Java.

Syntax:

do

{

statement1;

}while(condition);

for (initialization; condition; increment/decrement)

 {

 statement;

}

78

Example:

class forLoopTest

 {

 public static void main(String args[])

{

 for (int j = 1; j <= 5; j++)

 System.out.println(j);

 }

}

Output:

1

 2

 3

 4

 5

For-Each Loop :

For-Each loop is used to traverse through elements in an array. It is easier to use because we don’t have to

increment the value. It returns the elements from the array or collection one by one.

Example:

class foreachDemo {

 public static void main(String args[]) {

 int a[] = {10,15,20,25,30};

 for (int i : a) {

 System.out.println(i);

 }

 }

Output:

10

15

20

79

25

30

Branching Statements in Java :

Branching statements jump from one statement to another and transfer the execution flow. There are 3

branching statements in Java.

Break :

Break statement is used to terminate the execution and bypass the remaining code in loop. It is mostly used

in loop to stop the execution and comes out of loop. When there are nested loops then break will terminate

the innermost loop.

Example:

class breakTest {

 public static void main(String args[]) {

 for (int j = 0; j < 5; j++) {

 // come out of loop when i is 4.

 if (j == 4)

 break;

 System.out.println(j);

 }

 System.out.println("After loop");

 }

}

Output:

0

1

2

3

4

After loop

80

Continue :

Continue statement works same as break but the difference is it only comes out of loop for that iteration and

continue to execute the code for next iterations. So it only bypasses the current iteration.

Example:

class continueTest {

 public static void main(String args[]) {

 for (int j = 0; j < 10; j++) {

 // If the number is odd then bypass and continue with next value

 if (j%2 != 0)

 continue;

 // only even numbers will be printed

 System.out.print(j + " ");

 }

 }

}

Output:

0 2 4 6 8

Return :

Return statement is used to transfer the control back to calling method. Compiler will always bypass any

sentences after return statement. So, it must be at the end of any method. They can also return a value to the

calling method.

6. Explain the significance of public, protected and private access specifies in Inheritance.

(or) Describe different levels of access protection available in Java.

81

There are two types of modifiers in java: access modifier and non-access modifier. The access modifiers

specifies accessibility (scope) of a datamember, method, constructor or class. There are 4 types of access

modifiers:

1. private

2. default

3. protected

4. public

There are many non-access modifiers such as static, abstract, synchronized, native, volatile, transient etc.

1) private access modifier:

The private datamembers, method ,contructor are accessible only within class in which their are declared

and out of the class the doesn’t have scope.

Example of private access modifier:

In this example, we have created two classes ‘A’ and ‘Simple’. ‘A’ class contains private data member and

private method. We are accessing these private members from outside the class, so there is compile time

error.

class A

{

private int data=40;

private void msg()

 {

System.out.println("Hello java");

 }

}

 public class Simple

{

 public static void main(String args[])

 {

 A obj=new A();

 System.out.println(obj.data);//Compile Time Error

 obj.msg();//Compile Time Error

 }

}

82

2) default access modifier:

If you don't use any modifier, it is treated as default by default. The default modifier is accessible only

within package.

Example of default access modifier:

In this example, we have created two packages “pack” and “mypack”. We are accessing the A class from

outside its package, since A class is not public, so it cannot be accessed from outside the package.

//save by A.java

//save by B.java

package pack;

class A

{

void msg()

 {

System.out.println("Hello");

 }

}

package mypack;

import pack.*;

 class B

{

 public static void main(String args[])

 {

 A obj = new A();//Compile Time Error

 obj.msg();//Compile Time Error

 }

}

83

In the above example, the scope of class A and its method msg() is default so it cannot be accessed from

outside the package.

ACCESS

MODIFIER

PUBLIC PROTECTED PRIVATE

Same class YES YES YES

Subclass in

same

package

YES YES NO

Other

classes in

same

package

YES YES NO

Subclass in

other

packages

YES YES NO

Non

subclasses in

other

packages

YES NO NO

7.With suitable example demonstrate super, this ,final and static keywords

Super Keyword: The super keyword in java is a reference variable which is used to refer immediate parent

class object.

Whenever you create the instance of subclass, an instance of parent class is created implicitly which is

referred by super reference variable

Usage of java super Keyword

1. super can be used to refer immediate parent class instance variable.

2. super can be used to invoke immediate parent class method.

3. super() can be used to invoke immediate parent class constructor. The use of super keyword

84

super can be used to invoke

immediate parent class method

super() can be used to invoke

immediate parent class constructor.

The use of super keyword

class Base

{

String color="white";

 void display()

 {

 System.out.println("have a nice

day");

 }

}

Class Sub extends Base

{

String color="black";

void display()

 {

 System.out.println("Hello

ALL...");

 }

void printColor()

 {

 System.out.println(color);//prints

color of sub class

 System.out.println(super.color);//

prints color of Base class

 }

void work()

 {

 display();

 super.display();

 }

}

class TestSuper2

 {

public static void main(String

args[])

 {

 Sub ob=new Sub();

 ob. printColor();

 ob.work();

 }

class Parentclass

{

 Parentclass()

 {

System.out.println("Constructor of

parent class");

 }

}

class Subclass extends Parentclass

{

 Subclass()

 {

/*Compile implicitly adds super()

here as the first statement of this

constructor.*/

System.out.println("Constructor of

child class");

 }

 Subclass(int num)

 {

/*Even though it is a parameterized

constructor The compiler still adds

the super() here */

System.out.println("arg constructor of

child class");

 }

 void display()

 {

 System.out.println("Hello!");

 }

 public static void main(String

args[])

 {

 Subclass obj= new Subclass();

 //Calling sub class method

 obj.display();

 Subclass obj2= new Subclass(10);

 obj2.display();

 }

}

85

 }

Output

black

white

Hello ALL…

have a nice day

Output:

Constructor of parent class

Constructor of child class

Hello!

Constructor of parent class

arg constructor of child class

Hello!

86

Final Keyword In Java

The final keyword in java is used to restrict the user. The java final keyword can be used in many context.

Final can be:

 variable

 method

 class

if a variable is made as final it cannot change its value

if a method is made as final it cannot override it.

If a class is made as final it cannot be extended by another class

The this Keyword

Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines

the this keyword. this can be used inside any method to refer to the current object. That is,

this is always a reference to the object on which the method was invoked. You can use this

anywhere as reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

final Class A

{

….}

Class B extends A //error since class A is final we can’t inherit it properties

{

….

}

87

Box(double w, double h, double d) {

this.width = w;

this.height = h;

this.depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo {

public static void main(String args[]) {

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

88

Inside Box(), this will always refer to the invoking object.

Static keyword:

If a variable or a method is made as static ,then this variables and methods can be called with out using the

class object.

Example:

class staticdemo

{

static int i=10;

static void display()

{

System.out.println("I am in static display");

}

public static void main(String args[])

{

System.out.println(" i value is"+i);// variable “I” is accessed with out class object

display();// function is called without class object

}

}

Output:

8.What is polymorphism? Explain different types of polymorphisms with examples.

(or)

 Compare and cons tract overloading and overriding with an example

Ans: Polymorphism in Java is a concept by which we can perform a single action in different ways.

Polymorphism is derived from two Greek words: poly and morphs. The word "poly" means many and

"morphs" means forms. So polymorphism means many forms.

There are two types of polymorphism in Java:

1. Compile-time polymorphism or Ad hoc polymorphism

2. Runtime polymorphism. Or Pure polymorphism

We can perform polymorphism in java by method overloading and method overriding.

89

2.3 Types of polymorphism

1.Compile-time polymorphism or Ad hoc polymorphism:

Ad hoc polymorphism is also known as function overloading or operator overloading because a

polymorphic function can represent a number of unique and potentially different implementations

depending on the type of argument it is applied to.

i) Operator overloading:

Java also provide option to overload operators. For example, we can make the operator (‘+’) for string class

to concatenate two strings. We know that this is the addition operator whose task is to add two operands. So

a single operator ‘+’ when placed between integer operands, adds them and when placed between string

operands, concatenates them.In java, Only “+” operator can be overloaded:

2.Method Overloading:

When there are multiple functions with same name but different parameters then these functions are said to

be overloaded. Functions can be overloaded by change in number of arguments or/and change in type of

arguments. Overloaded methods are generally used when they conceptually execute the same task but with a

slightly different set of parameters

Example on Operator

overloading

Example on Method overloading

// Java program for Operator class MultiplyFun

90

overloading

class Operatoroverloading

{

void operator(String str1, String

str2)

 {

String s = str1 + str2;

System.out.println("Concatinated

String - "+ s);

 }

void operator(int a, int b)

 {

 int c = a + b;

 System.out.println("Sum = " +

c);

 }

}

class Main {

public static void main(String[]

args)

{

Operatoroverloading obj = new

Operatoroverloading ();

obj.operator(2, 3);

obj.operator("hi", "hello");

 }

}

Output:

Sum = 5

Concatinated String -hihello

{

// Method with 2 parameter

 static int Multiply(int a, int b)

 {

 return a * b;

 }

 // Method with 3 parameter

 static int Multiply(int a, int b,int c)

 {

 return a * b*c;

 }

// Method with the same name but 2 double

parameter

 static double Multiply(double a, double b)

 {

 return a * b;

 }

}

class Main {

 public static void main(String[] args)

 {

System.out.println(MultiplyFun.Multiply(2, 4));

System.out.println(MultiplyFun.Multiply(2, 4,2));

System.out.println(MultiplyFun.Multiply(5.5,6.3));

 }
}
Output:

16

34.65

Note:

we overload static methods

we cannot overload methods that differ only by static keyword

we overload main() in Java

2.Runtime polymorphism. Or Pure polymorphism

Runtime polymorphism or Dynamic Method Dispatch is a process in which a call to an overridden

method is resolved at runtime rather than compile-time.

91

Difference between Method overloading and Method overriding

S.no Method overloading Method overriding

1 When a class have same

method name with different

argument, than it is called

method overloading.

Method overriding - Method of

superclass is overridden in subclass to

provide more specific

implementation.

2 Method overloading is

generally done in same

class but can also be done in

SubClass .

Method overriding is always done in

subClass in java.

3 Both Static and instance

method can be overloaded
in java.

Only instance methods can be

overridden in java.

Static methods can’t be overridden

in java.

4 Main method can also be

overloaded in java

Main method can’t be overridden in

java, because main is static method

and static methods can’t be overridden

in java (as mentioned in above point)

5 private methods can be

overloaded in java.
private methods can’t be overridden
in java, because private methods are

not inherited in subClass in java.

6 final methods can be

overloaded in java.

final methods can’t be overridden in

java, because final methods are not

inherited in subClass in java.

7 Call to overloaded method is

bonded at compile time in

java.

Call to overridden method is bonded

at runtime in java.

8 Method overloading concept

is also known as compile

time polymorphism or ad

hoc polymorphism or static

binding in java.

Method overriding concept is also

known as runtime time

polymorphism or pure

polymorphism or Dynamic binding
in java.

9)What is a nested class? Differentiate between static nested classes and non-static nested classes.

A nested class (or commonly called inner class) is a class defined inside another class

As anillustration, two nested classes MyNestedClass1 and MyNestedClass2 are defined inside the

definition of an outer class called MyOuterClass.

http://www.javamadesoeasy.com/2015/05/static-keyword-in-java-variable-method.html
http://www.javamadesoeasy.com/2015/05/final-keyword-in-java-20-salient.html

92

public class MyOuterClass { // outer class defined here

......

private class MyNestedClass1 { } // an nested class defined inside the outer class(inner class)

public static class MyNestedClass2 { } // an "static" nested class defined inside the

outer class

......

}

A nested class has access to the members, including private members, of the class in which it is nested.

However, the enclosing class does not have access to the members of the nested class.

There are two types of nested classes: static and non-static. A static nested class is one

that has the static modifier applied.

The most important type of nested class is the inner class. An inner class is a non-static

nested class. The following program illustrates how to define and use an inner class. The class named

Outer has one instance variable named outer_x, one instance method named test(), and

defines one inner class called Inner

// Demonstrate an inner class.

class Outer {

int outer_x = 100;

void test() {

Inner inner = new Inner();

inner.display();

}

// this is an inner class as it is a non static class

class Inner {

void display() {

System.out.println("display: outer_x = " + outer_x);

}

}

}

class InnerClassDemo {

public static void main(String args[]) {

Outer outer = new Outer();

outer.test();

}

}

Output from this application is shown here:

display: outer_x = 100

Properties of nested class:

1. A nested class is a proper class. That is, it could contain constructors, member variables

and member methods. You can create an instance of a nested class via the new operator and

constructor.

2. A nested class is a member of the outer class, just like any member variables and methods

defined inside a class.

93

3. Most importantly, a nested class can access the private members (variables/methods) of the

enclosing outer class, as it is at the same level as these private members, but

the reverse is not true. Members of the inner class are known only within the scope of the

inner class and may not be used by the outer class

4. A nested class can have private, public, protected, or the default access, just like any

member variables and methods defined inside a class. A private inner class is only accessible

by the enclosing outer class, and is not accessible by any other classes. [An top-level outer

class cannot be declared private, as no one can use a private outer class.]

5. A nested class can also be declared static, final or abstract, just like any ordinary class.

6. A nested class is NOT a subclass of the outer class. That is, the nested class does not

inherit the variables and methods of the outer class. It is an ordinary self-contained class.

[Nonetheless, you could declare it as a subclass of the outer class, via keyword "extends

OuterClassName", in the nested class's definition.]

The usages of nested class are:

1. To control visibilities (of the member variables and methods) between inner/outer

class. The nested class, being defined inside an outer class, can access private members of the

outer class.

2. To place a piece of class definition codes closer to where it is going to be used, to

make the program clearer and easier to understand.

3. for namespace managemen

10) What is the purpose of constructor in Java programming? Explain the different types of

constructors with an example.

 Constructor is a special type of method that is used to initialize the object.

 Constructor is invoked at the time of object creation. It constructs the values i.e. provides data for the

object that is why it is known as constructor.

 Rules for creating Constructor

 There are basically two rules defined for the constructor.

1. Constructor name must be same as its class name

2. Constructor must have no explicit return type

Types of Constructors

 There are two types of constructors:

1. default constructor (no-arg constructor)

94

2. parameterized constructor

 2.2 Types of constructors

1) Default Constructor

 A constructor that have no parameter is known as default constructor.

Syntax of Default Constructor:

Example of Default Constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at the time of

object creation.

Output: Bike is created

class_name() {
Statements;

}

class Bike {

 Bike() {

 System.out.println("Bike is created");

 }

 public static void main(String args[]) {

 Bike b=new Bike();

 }

 }

95

Rule: If there is no constructor in a class, compiler automatically creates a default constructor.

Purpose of Default Constructor

Default constructor provides the default values to the object like 0, null etc. depending on the type.

2. Parameterized constructor

A constructor that has parameters is known as parameterized constructor.

Usage of Parameterized Constructor

Parameterized constructor is used to provide different values to the distinct objects.

96

Example on Parameterized constructor :.

Output:

111 abc

222 def

11) Write a program to find the transpose of a given matrix.

public class Transpose {

 public static void main(String[] args) {

class Student {

 int id;

 String name;

 Student(int i,String n) //parameterized constructor {

 id = i;

 name = n;

 }

 void display() {

 System.out.println(id+" "+name);

 }

 public static void main(String args[]) {

 Student s1 = new Student(111,"abc");

 Student s2 = new Student(222,"def");

 s1.display();

 s2.display();

 } }

97

 int row = 2, column = 3;

 int[][] matrix = { {2, 3, 4}, {5, 6, 4} };

 // Display current matrix

 display(matrix);

 // Transpose the matrix

 int[][] transpose = new int[column][row];

 for(int i = 0; i < row; i++) {

 for (int j = 0; j < column; j++) {

 transpose[j][i] = matrix[i][j];

 }

 }

 // Display transposed matrix

 display(transpose);

 }

 public static void display(int[][] matrix) {

 System.out.println("The matrix is: ");

 for(int[] row : matrix) {

 for (int column : row) {

 System.out.print(column + " ");

 }

 System.out.println();

 }

 }

}

12) Explain the different parameter passing mechanisms used in Java with an example.

 Ans: There are two diffe

 a) pass by values (or) call by value

b) pass by objects (or) call by object

program to demonstrate call by value and call by object

class Test2 {

int x=10,y=20;

static void display(Test2 obj)

{

System.out.println(" x value is"+obj.x);

System.out.println(" y value is"+obj.y);

}

void display(int a,int b)

98

{

 System.out.println("a value is"+a);

System.out.println("b value is"+b);

}

public static void main(String args[]) {

Test2 obj = new Test2();

display(obj); //call by object

obj.display(100,200); //call by value

}

}

99

UNIT-II

1. How to define a package?Explain with suitable example how to create ,import and access

apackage?

Answer:

A java package is a group of similar types of classes, interfaces and sub-packages. Package in java

can be categorized in two forms,

i) Built-in package and

ii) User-defined package.

Built-in package:

Collection of classes & interfaces which are already defined are called as Build-in packages. There

are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

User-defined packages:

 The collection of classes and interfaces for which definition is provided by

the developer or programmer is called as user-defined packages.

Defining a user-defined package

 To create a user defined package in java we use a keyword “package”

Syntax:

package packagename[.subpackage1][.subpackage2]…[.subpackageN];

Sample program on user defined package:

 //save as Simple.java

package mypack;

public class Simple {

public static void main(String args[]) {

System.out.println("Welcome to package");

}

}

compile java package:

If you are not using any IDE, you need to follow the syntax given below:

Syntax: javac -d directory javafilename

For example 1. javac -d . Simple.java The -d switch specifies the destination where to put the

generated class file.

You can use any directory name like /home (in case of Linux), d:/abc (in case of windows) etc.

If you want to keep the package within the same directory, you can use. (dot).

run java package program: You need to use fully qualified name e.g. mypack.Simpleetc to run

the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output: Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents destination.

The. (dot) Represent the current folder.

Importing packages

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

10
0

3. fully qualified name.

1) Using packagename.*

 If you use package.* then all the classes and interfaces of this package will be accessible but

not subpackages.

 The import keyword is used to make the classes and interface of another package accessible to

the current package.

Example of package that import the packagename.*

//save by A.java

package pack;

public class A {

public void msg() {

System.out.println("Hello");

}

}

//save by B.java
package mypack;

import pack.*;

class B {

public static void main(String args[]) {

A obj = new A();

obj.msg();

}

 }

Output: Hello

2) Using packagename.classname

 If you import package.classname then only declared class of this package will be accessible.

Example of package by import package.classname

//save by A.java
package pack;

public class A {

public void msg() {

System.out.println("Hello");

}

}

 //save by B.java

package mypack;

 import pack.A;

class B {

public static void main(String args[]) {

A obj = new A(); obj.msg();

}

 }

10
1

Output: Hello

3) Using fully qualified name

 If you use fully qualified name then only declared class of this package will be accessible. Now

there is no need to import. But you need to use fully qualified name every time when you are

accessing the class or interface.

 It is generally used when two packages have same class name e.g. java.util and java.sql packages

contain Date class. Example of package by import fully qualified name.

//save by A.java

package pack; public class A { public void msg() { System.out.println("Hello"); } } //save by

B.java

package mypack;

 class B {

public static void main(String args[]) {

pack.Aobj = new pack.A();//using fully qualified name

obj.msg();

}

 }

Output: Hello

Note: If you import a package, sub packages will not be imported. If you import a package, all

the classes and interface of that package will be imported excluding the classes and interfaces of

the sub packages. Hence, you need to import the sub package as well.

2. Write a program to implement the operations of random access file

Answer:

 RandamAccessFile class supported by java.io package allows us to create files that can be used

for reading and writing data with random access.

 This class implements DataInput, DataOutput and Closeable Interfaces

 It supports positioning request that means we can position the file pointer with in the file.

 It has two constructors

RandamAccessFile(File fileObj,String access)throws FileNotFoundException

RandamAccessFile(String filename,String access)throws FileNotFoundException

In both cases, access determines what type of file access is permitted.

Access Purpose

 r File opened for reading purpose

rw File opened for read-write purpose

rws File opened for read-write purpose and every change to the file’s data or

metadata will

 be immediately written to physical device

rwd File opened for read-write purpose& every change to the file’s data will be

immediately written to physical device

10
2

The method seek() is used to set the current position of the file pointer

Syntax:

void seek(long newPos)throws IOException

Here, newPos specifies the new position, in bytes, of the file pointer from the beginning of the

file.

//writing and reading with random access

import java.io.*;

class RandomIO {

public static void main(String args[]) {

RandamAccessFile file=null;

try {

file=new RandomAccessFile(“rand.dat”, “rw”);

//Writing to the file

file.writeChar(‘x’);

file.writeInt(333);

file.writeDouble(3.1412);

file.seek(0);//go to the beginning

System.out.println(file.readChar());

System.out.println(file.readInt());

System.out.println(file.readDouble());

file.seek(2); //go to the second item

System.out.println(file.readInt()); //go to the end and append false to the file file.seek(file.length());

file.writeBoolean(false);

file.seek(4);

System.out.println(file.readBoolean());

file.close();

}

catch(IOException e) {

System.out.println(e);

}

}

}

Output:

x

333

3.1412

333

False

10
3

3. Write a program to compute an average of the values in a file

package txtfileaverage;

import java.io.*;

import java.util.Scanner;

public class Txtfile {

 public static void main(String args[]) throws IOException

 {

 Scanner file = new Scanner(new File("input.txt"));

intnumTimes = file.nextInt();

file.nextLine();

 for(inti = 0; i<numTimes; i++);

 {

int sum = 0;

int count = 0;

 Scanner split = new Scanner(file.nextLine());

 while(split.hasNextInt())

 //for (int a = 0; a < 4 ; a++)

 {

 sum += split.nextInt();

 count++;

 }

System.out.println("the average is = " + ((double)sum / count));

 }

 }

}

4. a)Explain multilevel inheritance with the help of abstract class in your program

When a class extends a class, which extends anther class then this is called multilevel
inheritance. For example class C extends class B and class B extends class A then this type of
inheritance is known as multilevel inheritance.

https://beginnersbook.com/2013/05/java-inheritance-types/
https://beginnersbook.com/2013/05/java-inheritance-types/

10
4

Lets see this in a diagram:

It’s pretty clear with the diagram that in Multilevel inheritance there is a concept of grand parent
class. If we take the example of this diagram, then class C inherits class B and class B inherits
class A which means B is a parent class of C and A is a parent class of B. So in this case class C
is implicitly inheriting the properties and methods of class A along with class B that’s what is
called multilevel inheritance.

abstract class A{ //Abstract Class

void disp1(){

System.out.println("class A");

 }

}

abstract class B extends A{ //Abstract Class abstract void disp2(); //Abstract Method

}

class C extends B{

void disp2(){ System.out.println("class B"); }

public static void main(String args[]){

 C c = new C();

c.disp1();

c.disp2();

}

}

Output :

class A

class B

 b)Can inheritance be applied between interfaces? Justify your answer.

(or) How can you extend one interface by the other interface? Discuss

Answer: Interfaces Can Be Extended

One interface can inherit another by use of the keyword extends. The syntax is the same as for inheriting

classes. When a class implements an interface that inherits another interface, it must provide

implementations for all methods defined within the interface inheritance chain.

Following is an example:

10
5

 // One interface can extend another.

interface A {

void meth1();

 void meth2();

}

// B now includes meth1() and meth2() -- it adds meth3().

interface B extends A {

void meth3();

}

// This class must implement all of A and B class

MyClass implements B {

public void meth1() {

System.out.println("Implement meth1().");

}

public void meth2() {

System.out.println("Implement meth2().");

}

public void meth3() {

System.out.println("Implement meth3().");

 }

}

class IFExtend {

public static void main(String arg[]) {

MyClassob = new MyClass(); ob.meth1();

ob.meth2();

ob.meth3();

}

}

5. What is an interface? How to design and implement an interface in Java? Differentiate

between interface and abstract class.

Interfaces are syntactically similar to classes, but they lack instance variables, and their methods are

declared without any body. In practice, this means that you can define interfaces that don’t make

assumptions about how they are implemented. Once it is defined, any number of classes can implement an

interface. Also, one class can implement any number of interfaces. To implement an interface, a class must

create the complete set of methods defined by the interface. However, each class is free to determine the

details of its own implementation. By providing the interface keyword, Java allows you to fully utilize the

“one interface, multiple methods” aspect of polymorphism.

An interface in java is a blueprint of a class. It has static constants and abstract methods.

 The interface in java is a mechanism to achieve abstraction.

 There can be only abstract methods in the java interface not method body.

 It is used to achieve abstraction and multiple inheritance in Java. o

 Java Interface also represents IS-A relationship.

 It cannot be instantiated just like abstract class.

10
6

They are mainly three reasons to use interface. They are given below.

 It is used to achieve abstraction.

 By interface, we can support the functionality of multiple inheritances.

 It can be used to achieve loose coupling.

Defining an Interface Syntax:

 public interface NameOfInterface {

// Any number of final, static fields

 // Any number of abstract method declarations

}

In other words, Interface fields are public, static and final by default, and methods are public and

abstract.

Example on class implementing interface

interface MyInterface {

public void method1();

}

class Demo implements MyInterface {

public void method1() {

System.out.println("Implementation of method1");

}

public static void main(String arg[]) {

Demo obj=new Demo();

obj.method1() ;

}

}

Output: Implementation of method1

Difference between abstract class and interface

 Abstract class and interface both are used to achieve abstraction where we can declare the abstract

methods.

 Abstract class and interface both can't be instantiated.

But there are many differences between abstract class and interface that are given below.

Abstract class Interface

1) Abstract class can have abstract

and non-abstract methods.

Interface can have only abstract

methods. Since Java 8, it can have

default and static methods also.

2) Abstract class doesn’t support

multiple inheritance.

Interface supports multiple

inheritance.

3) Abstract class can have final,

non-final, static and non-static variables.

Interface has only static and final

variables.

4) Abstract

class can provide the implementation of

interface.

Interface can’t provide the

implementation of abstract class.

5) The abstract keyword is used to

declare abstract class.

The interface keyword is used to

declare interface.

10
7

6) Example: public abstract class

Shape{ public abstract void draw(); }

Example: public

Interface Drawable{ void draw(); }

6. Write a program to copy the contents of file1 to file 2. Read the names of files as line

arguments.

Reading/Writing Characters:

The subclasses of Reader and Writer implements streams that handle characters. The two subclasses

used are

FileReader-for reading characters

FileWriter –for writing characters

Example to copy contents of file “input.dat” into file “output.dat”

//copying characters from one file into another

import java.io.*;

class CopyCharacters {

public static void main(String args[])

{ //Declare and create input and output file

File inFile=new File(“input.dat”);

File outFile=new File(“output.dat”);

FileReader ins=null;//creates file stream ins

FileWriter outs=null;//creates file stream outs

try {

 ins=new FileReader(inFile); //opens inFile

outs=new FileWriter(outFile);//opens outFile

//read and write till the end

intch;

while((ch=ins.read())!=-1) {

outs.write(ch);

 }

}

catch(IOException e) {

System.out.println(e);

System.exit(-1);

}

Finally { try {

ns.close();

outs.close();

 }

catch(IOException e) {

 }

 }}}

7. What support is provided by File class for file management? Illustrate with suitable

scenarios.

10
8

The File is a built-in class in Java. In java, the File class has been defined in the java.io package.
The File class represents a reference to a file or directory. The File class has various methods to
perform operations like creating a file or directory, reading from a file, updating file content, and

deleting a file or directory.

The File class in java has the following constructors.

Constructor with Description

 File(String pathname)

It creates a new File instance by converting the givenpathname string into an abstract pathname. If the

given string isthe empty string, then the result is the empty abstract pathname.

 File(String parent, String child)

It Creates a new File instance from a parent abstractpathname and a child pathname string. If parent is null

then the new File instance is created as if by invoking thesingle-argument File constructor on the given

child pathname string.

 File(File parent, String child)

It creates a new File instance from a parent abstractpathname and a child pathname string. If parent is null

then the new File instance is created as if by invoking thesingle-argument File constructor on the given

child pathname string.

 File(URI uri)

It creates a new File instance by converting the given file: URI into an abstract pathname.

Methods with Description

1.String getName()

It returns the name of the file or directory that referenced by the current File object.

2.String getParent()

It returns the pathname of the pathname's parent, or null if the pathname does not name a parent directory.

3.String getPath()

It returns the path of curent File.

4.File getParentFile()

It returns the path of the current file's parent; or null if it does not exist.

5.String getAbsolutePath()

It returns the current file or directory path from the root.

6.boolean isAbsolute()

It returns true if the current file is absolute, false otherwise.

10
9

7.boolean isDirectory()

It returns true, if the current file is a directory; otherwise returns false.

8.boolean isFile()

It returns true, if the current file is a file; otherwise returns false.

9.boolean exists()

It returns true if the current file or directory exist; otherwise returns false.

10.boolean canRead()

It returns true if and only if the file specified exists and can be read by the application; false otherwise.

11.boolean canWrite()

It returns true if and only if the file specified exists and the application is allowed to write to the file; false

otherwise.

12.long length()

It returns the length of the current file.

13.long lastModified()

It returns the time that specifies the file was last modified.

14.boolean createNewFile()

It returns true if the named file does not exist and was successfully created; false if the named file already

exists.

15.boolean delete()

It deletes the file or directory. And returns true if and only if the file or directory is successfully deleted;

false otherwise.

16.void deleteOnExit()

It sends a requests that the file or directory needs be deleted when the virtual machine terminates.

17.boolean mkdir()

11
0

It returns true if and only if the directory was created; false otherwise.

18.boolean mkdirs()

It returns true if and only if the directory was created, along with all necessary parent directories; false

otherwise.

19.boolean renameTo(File dest)

It renames the current file. And returns true if and only if the renaming succeeded; false otherwise.

20.boolean setLastModified(long time)

It sets the last-modified time of the file or directory. And returns true if and only if the operation succeeded;

false otherwise.

21.boolean setReadOnly()

It sets the file permission to only read operations; Returns true if and only if the operation succeeded; false

otherwise.

22.String[] list()

It returns an array of strings containing names of all the files and directories in the current directory.

23.String[] list(FilenameFilter filter)

It returns an array of strings containing names of all the files and directories in the current directory that

satisfy the specified filter.

24.File[] listFiles()

It returns an array of file references containing names of all the files and directories in the current directory.

25.File[] listFiles(FileFilter filter)

It returns an array of file references containing names of all the files and directories in the current directory

that satisfy the specified filter.

26.boolean equals(Object obj)

It returns true if and only if the argument is not null and is an abstract pathname that denotes the same file

or directory as this abstract pathname.

11
1

27.int compareTo(File pathname)

It Compares two abstract pathnames lexicographically. It returns zero if the argument is equal to this

abstract pathname, a value less than zero if this abstract pathname is lexicographically less than the

argument, or a value greater than zero if this abstract pathname is lexicographically greater than the

argument.

28int compareTo(File pathname)

Compares this abstract pathname to another object. Returns zero if the argument is equal to this abstract

pathname.

importjava.io.*;

publicclassFileClassTest{

 publicstaticvoidmain(Stringargs[]){

 File f =newFile("C:\\Raja\\datFile.txt");

 System.out.println("Executable File : "+f.canExecute());

 System.out.println("Name of the file : "+f.getName());

 System.out.println("Path of the file : "+f.getAbsolutePath());

 System.out.println("Parent name : "+f.getParent());

 System.out.println("Write mode : "+f.canWrite());

 System.out.println("Read mode : "+f.canRead());

 System.out.println("Existance : "+f.exists());

 System.out.println("Last Modified : "+f.lastModified());

 System.out.println("Length : "+f.length());

 //f.createNewFile()

 //f.delete();

 //f.setReadOnly()

 }

}

11
2

8. a)Demonstrate ordinal() method of enum.

The java.lang.Enum.ordinal() method returns the ordinal of this enumeration constant (its position in its

enum declaration, where the initial constant is assigned an ordinal of zero).

Declaration

Following is the declaration for java.lang.Enum.ordinal() method

public final int ordinal();
ParametersNot Available
Return Value

This method returns the ordinal of this enumeration constant.

ExceptionNot Available
Example

The following example shows the usage of java.lang.Enum.ordinal() method

package com.tutorialspoint;

import java.lang.*;

// enum showing Mobile prices

enum Mobile {

 Samsung(400), Nokia(250),Motorola(325);

int price;

 Mobile(int p) {

 price = p;

 }

intshowPrice() {

 return price;

 }

}

public class EnumDemo {

 public static void main(String args[]) {

System.out.println("CellPhone List:");

 for(Mobile m : Mobile.values()) {

System.out.println(m + " costs " + m.showPrice() + " dollars");

 }

 Mobile ret = Mobile.Samsung;

System.out.println("The ordinal is = " + ret.ordinal());

11
3

System.out.println("MobileName = " + ret.name());

 }

}

Result:

CellPhone List:

Samsung costs 400 dollars

Nokia costs 250 dollars

Motorola costs 325 dollars

The ordinal is = 0

MobileName = Samsung

b)What is type wrapper? What is the role of auto boxing and boxing?

A Wrapper class is a class whose object wraps or contains primitive data types. When we create an object

to a wrapper class, it contains a field and in this field, we can store primitive data types. In other words, we

can wrap a primitive value into a wrapper class object.

Need of Wrapper Classes

1.They convert primitive data types into objects. Objects are needed if we wish to modify the arguments

passed into a method (because primitive types are passed by value).

2.The classes in java.util package handles only objects and hence wrapper classes help in this case also.

3.Data structures in the Collection framework, such as ArrayList and Vector, store only objects (reference

types) and not primitive types.

4.An object is needed to support synchronization in multithreading.

Primitive Data types and their Corresponding Wrapper class

Autoboxing: Automatic conversion of primitive types to the object of their corresponding wrapper classes

is known as autoboxing. For example – conversion of int to Integer, long to Long, double to Double etc.

Example:

https://www.geeksforgeeks.org/arraylist-in-java/amp/
https://www.geeksforgeeks.org/vector-vs-arraylist-java/amp/

11
4

// Java program to demonstrate Autoboxing

import java.util.ArrayList;

class Autoboxing

{

 public static void main(String[] args)

 {

 char ch = 'a';

 // Autoboxing- primitive to Character object conversion

 Character a = ch;

 ArrayList<Integer>arrayList = new ArrayList<Integer>();

 // Autoboxing because ArrayList stores only objects

 arrayList.add(25);

 // printing the values from object

 System.out.println(arrayList.get(0));

 }

}

Output:

25

Unboxing: It is just the reverse process of autoboxing. Automatically converting an object of a wrapper

class to its corresponding primitive type is known as unboxing. For example – conversion of Integer to int,

Long to long, Double to double, etc.

// Java program to demonstrate Unboxing

import java.util.ArrayList;

class Unboxing

{

 public static void main(String[] args)

 {

 Character ch = 'a';

 // unboxing - Character object to primitive conversion

 char a = ch;

 ArrayList<Integer>arrayList = new ArrayList<Integer>();

 arrayList.add(24);

 // unboxing because get method returns an Integer object

 intnum = arrayList.get(0);

 // printing the values from primitive data types

 System.out.println(num);

 }

}

Output:

24

11
5

9. Give an example where interface can be used to support multiple inheritance.

An interface contains variables and methods like a class but the methods in an interface are abstract by

default unlike a class. Multiple inheritance by interface occurs if a class implements multiple interfaces or

also if an interface itself extends multiple interfaces.

A program that demonstrates multiple inheritance by interface in Java is given as follows:

interface AnimalEat {

 void eat();

}

interface AnimalTravel {

 void travel();

}

class Animal implements AnimalEat, AnimalTravel {

 public void eat() {

System.out.println("Animal is eating");

 }

 public void travel() {

System.out.println("Animal is travelling");

 }

}

public class Demo {

 public static void main(String args[]) {

 Animal a = new Animal();

a.eat();

a.travel();

 }

}

Output

Animal is eating

Animal is travelling

10. Distinguish between Byte Stream Classes and Character Stream Classes.

Java provides I/O Streams to read and write data where, a Stream represents an input source or an output

destination which could be a file, i/o devise, other program etc.

Based on the data they handle there are two types of streams –

Byte Streams – These handle data in bytes (8 bits) i.e., the byte stream classes read/write data of 8 bits.

Using these you can store characters, videos, audios, images etc.

Character Streams – These handle data in 16 bit Unicode. Using these you can read and write text data

11
6

only.

The Reader and Writer classes (abstract) are the super classes of all the character stream classes: classes

that are used to read/write character streams.

Whereas the InputStream and OutputStream classes (abstract) are the super classes of all the input/output

stream classes: classes that are used to read/write a stream of bytes.

Following diagram illustrates all the input and output Streams (classes) in Java.

Difference between input/output Streams and Readers/Writers

The major difference between these is that the input/output stream classes read/write byte stream data.

Whereas the Reader/Writer classes handle characters.

The methods of input/output stream classes accept byte array as parameter whereas the Reader/Writer

classes accept character array as parameter.

The Reader/Writer classes handles all the Unicode characters, comes handy for internalization,

comparatively efficient that input/output streams.

Therefore, until you deal with binary data like images it is recommended to use Reader/Writer classes.

Example Input/Output Streams

Following Java program reads data from a particular file using FileInputStream and writes it to another,

using FileOutputStream.

Import java.io.File;

Import java.io.FileInputStream;

11
7

Import java.io.FileOutputStream;

Import java.io.IOException;

Public class IOStreamsExample {

 Public static void main(String args[]) throws IOException {

 //Creating FileInputStream object

 File file = new File(“D:/myFile.txt”);

FileInputStreamfis = new FileInputStream(file);

 Byte bytes[] = new byte[(int) file.length()];

 //Reading data from the file

Fis.read(bytes);

 //Writing data to another file

 File out = new File(“D:/CopyOfmyFile.txt”);

FileOutputStreamoutputStream = new FileOutputStream(out);

 //Writing data to the file

outputStream.write(bytes);

outputStream.flush();

System.out.println(“Data successfully written in the specified file”);

 }

}

Output

Data successfully written in the specified file.

Example Reader/Writer Streams

Following Java program reads data from a particular file using FileReader and writes it to another, using

FileWriter.

Import java.io.File;

Import java.io.FileReader;

Import java.io.FileWriter;

Import java.io.IOException;

Public class IOStreamsExample {

 Public static void main(String args[]) throws IOException {

 //Creating FileReader object

 File file = new File(“D:/myFile.txt”);

FileReader reader = new FileReader(file);

 Char chars[] = new char[(int) file.length()];

 //Reading data from the file

Reader.read(chars);

 //Writing data to another file

 File out = new File(“D:/CopyOfmyFile.txt”);

FileWriter writer = new FileWriter(out);

 //Writing data to the file

Writer.write(chars);

Writer.flush();

System.out.println(“Data successfully written in the specified file”);

11
8

 }

}

OutputData successfully written in the specified file

UNIT –III

1.a) What is an exception? What are keywords used in exception handled in Java programming? Explain

with suitable program.

(or)Write a program that includes a try block and a catch clause which processes the arithmetic exception

generated by division-by-zero error.

Exception

A Java Exception is an object that describes the exception that occurs in a program. When an

exceptional events occurs in java, an exception is said to be thrown. The code that's responsible

for doing something about the exception is called an exception handler.

Exception Handling is the mechanism to handle runtime malfunctions. We need to handle such

exceptions to prevent abrupt termination of program. The term exception means exceptional

condition, it is a problem that may arise during the execution of program. A bunch of things can

lead to exceptions, including programmer error, hardware failures, files that need to be opened

cannot be found, resource exhaustion etc.

All exception types are subclasses of class Throwable, which is at the top of exception class

hierarchy.

Checked Exception The exception that can be predicted by the programmer is called as Checked

Exception. The classes that extend Throwable class except Runtime Exception and Error are

known as checked exceptions e.g.IOException, SQLException etc. Checked exceptions are

checked at compile-time. Unchecked Exception Unchecked exceptions are the class that extends

RuntimeException. Unchecked exception is ignored at compile time. Example:

ArithmeticException, NullPointerException, ArrayIndexOutOfBound exception. Unchecked

exceptions are checked at runtime. Error Errors are typically ignored in code because you can

rarely do anything about an error. For example if stack overflow occurs, an error will arise. This

type of error is not possible handle in code. Error is irrecoverable e.g. OutOfMemoryError,

VirtualMachineError, AssertionError etc.

In java, exception handling is done using five keywords,

1. try

2. catch

3. throw

4. throws

5. finally

Exception handling is done by transferring the execution of a program to an appropriate

11
9

exception handler when exception occurs.

Using try and catch

Try is used to guard a block of code in which exception may occur. This block of code is

called guarded region.

A catch statement involves declaring the type of exception you are trying to catch. If an

exception occurs in guarded code, the catch block that follows the try is checked, if the type of

exception that occurred is listed in the catch block then the exception is handed over to the

catch block which then handles it.

Example using Try and catch class

ExceptionDemo {

public static void main(String args[]) {

inta,b,c;

 try {

a=0;

b=10;

c=b/a;

System.out.println(“This line will not be executed”);

}

catch(ArithmeticException e) {

System.out.println(“Divided by zero”);

}

System.out.println(“After exception is handled”);

}

}

Output:

Divided by zero After exception is handled

2) With a program illustrate user defined exception handling.

(or)

With a program illustrate user defined exception handling. Write a program for user defined exception

that check the internal and external marks are greater than 40 it raise the exception “internal marks are

exceed” and if external marks greater than 60 exception in raised the exception “external marks Exceed”

User Defined Exception or custom exception is creating your own exception class and throws that

exception using ‘throw’ keyword. This can be done by extending the class Exception.

In java we have already defined, exception classes such as ArithmeticException, NullPointerException

12
0

etc. These exceptions are already set to trigger on pre-defined conditions such as when you divide a

number by zero it triggers ArithmeticException, In the last tutorial we learnt how to throw these

exceptions explicitly based on your conditions using throw keyword.

In java we can create our own exception class and throw that exception using throw keyword. These

exceptions are known as user-defined or custom exceptions. In this tutorial we will see how to create

your own custom exception and throw it on a particular condition.

EXAMPLE OF USER DEFINED EXCEPTION IN JAVA:

Import java.io.IOException;

Import java.util.Scanner;

Public class InternalMarks extends Exception {

Public InternalMarks(String s) {

Super(s);

}

}

Public class ExternalMarks extends Exception {

Public ExternalMarks(String s) {

Super(s);

}

}

Public class Main {

Public static void main(String args[]) throws IOException

{

Intx,y;

Scanner s = new Scanner(System.in);

System.out.println(“Enter Internal Marks”);

X=s.nextInt();

If(x>40)

{

Try {

Throw new InternalMarks(“Internal Marks > 40”);

} catch (InternalMarks e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

Else

{

System.out.println(“Internal MARKS = “+ x);

}

System.out.println(“Enter External Marks”);

Y=s.nextInt();

If(y>60)

{

12
1

Try {

Throw new InternalMarks(“External Marks Exceeded”);

} catch (InternalMarks e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

Else

{

System.out.println(“External MARKS = “+ y);

}

}

}

3 a)Differentiate between Checked and UnChecked Exceptions with examples

Checked exceptions are checked at compile-time. It means if a method is throwing a checked exception

then it should handle the exception using try-catch block or it should declare the exception using throws

keyword, otherwise the program will give a compilation error.

Lets understand this with the help of an example:

Checked Exception Example

In this example we are reading the file myfile.txt and displaying its content on the screen. In this program

there are three places where a checked exception is thrown as mentioned in the comments below.

FileInputStream which is used for specifying the file path and name, throws FileNotFoundException. The

read() method which reads the file content throws IOException and the close() method which closes the

file input stream also throws IOException.

import java.io.*;

class Example {

 public static void main(String args[])

 {

 FileInputStreamfis = null;

 /*This constructor FileInputStream(File filename)

 * throws FileNotFoundException which is a checked

 * exception

 */

fis = new FileInputStream("B:/myfile.txt");

 int k;

 /* Method read() of FileInputStream class also throws

 * a checked exception: IOException

https://beginnersbook.com/2013/04/try-catch-in-java/
https://beginnersbook.com/2013/04/java-throws/
https://beginnersbook.com/2013/04/java-throws/

12
2

 */

 while((k = fis.read()) != -1)

 {

 System.out.print((char)k);

 }

 /*The method close() closes the file input stream

 * It throws IOException*/

 fis.close();

 }

}

Exception in thread "main" java.lang.Error: Unresolved compilation problems:

Unhandled exception type FileNotFoundException

Unhandled exception type IOException

Unhandled exception type IOException

Unchecked exceptions are not checked at compile time. It means if your program is throwing an

unchecked exception and even if you didn’t handle/declare that exception, the program won’t give a

compilation error. Most of the times these exception occurs due to the bad data provided by user during

the user-program interaction. It is up to the programmer to judge the conditions in advance, that can cause

such exceptions and handle them appropriately. All Unchecked exceptions are direct sub classes

of RuntimeException class.

Lets understand this with an example:

class Example {

 public static void main(String args[])

 {

 int num1=10;

 int num2=0;

 /*Since I'm dividing an integer with 0

 * it should throw ArithmeticException

 */

 int res=num1/num2;

 System.out.println(res);

 }

}

If you compile this code, it would compile successfully however when you will run it, it would throw

ArithmeticException. That clearly shows that unchecked exceptions are not checked at compile-time,

they occurs at runtime.

 b)What is meant by re-throwing exception? Discuss a suitable scenario for this.

Sometimes we may need to rethrow an exception in Java. If a catch block cannot handle the particular

exception it has caught, we can rethrow the exception. The rethrow expression causes the originally

12
3

thrown object to be rethrown.

Because the exception has already been caught at the scope in which the rethrow expression occurs, it is

rethrown out to the next enclosing try block. Therefore, it cannot be handled by catch blocks at the scope

in which the rethrow expression occurred. Any catch blocks for the enclosing try block have an

opportunity to catch the exception.

Syntax

catch(Exception e) {

System.out.println("An exception was thrown");

 throw e;

}

Example

Live Demo

public class RethrowException {

 public static void test1() throws Exception {

System.out.println("The Exception in test1() method");

 throw new Exception("thrown from test1() method");

 }

 public static void test2() throws Throwable {

 try {

 test1();

 } catch(Exception e) {

System.out.println("Inside test2() method");

 throw e;

 }

 }

 public static void main(String[] args) throws Throwable {

 try {

 test2();

 } catch(Exception e) {

System.out.println("Caught in main");

 }

 }

}

Output

The Exception in test1() method

Inside test2() method

Caught in main

4 a)What are the different ways that are possible to create multiple threaded programs in java? Discuss

the differences between them.

Multithreading in Java is a process of executing multiple threads simultaneously.

12
4

A thread is a lightweight sub-process, the smallest unit of processing. Multiprocessing and

multithreading, both are used to achieve multitasking.

However, we use multithreading than multiprocessing because threads use a shared memory area. They

don’t allocate separate memory area so saves memory, and context-switching between the threads takes

less time than process.

Multithreading is a Java feature that allows concurrent execution of two or more parts of a program for

maximum utilization of CPU. Each part of such program is called a thread. So, threads are light-weight

processes within a process.

Threads can be created by using two mechanisms :

1. Extending the Thread class

2. Implementing the Runnable Interface

Threadcreation by extending the Thread class

We create a class that extends the java.lang.Thread class. This class overrides the run() method

available in the Thread class. A thread begins its life inside run() method. We create an object of our new

class and call start() method to start the execution of a thread. Start() invokes the run() method on the

Thread object.

// Java code for thread creation by extending

// the Thread class

class MultithreadingDemo extends Thread {

 public void run()

 {

 try {

 // Displaying the thread that is running

System.out.println(

 "Thread " + Thread.currentThread().getId()

 + " is running");

 }

 catch (Exception e) {

 // Throwing an exception

12
5

System.out.println("Exception is caught");

 }

 }

}

// Main Class

public class Multithread {

 public static void main(String[] args)

 {

int n = 8; // Number of threads

 for (inti = 0; i< n; i++) {

MultithreadingDemoobject = new MultithreadingDemo();

object.start();

 }

 }

}

Output

Thread 15 is running

Thread 14 is running

Thread 16 is running

Thread 12 is running

Thread 11 is running

Thread 13 is running

Thread 18 is running

Thread 17 is running

Thread creation by implementing the Runnable Interface

We create a new class which implements java.lang.Runnable interface and override run() method. Then

we instantiate a Thread object and call start() method on this object.

 // Java code for thread creation by implementing

// the Runnable Interface

class MultithreadingDemo implements Runnable

 {

 public void run()

 {

try {

 // Displaying the thread that is running

System.out.println("Thread " + Thread.currentThread().getId()+ " is running");

 }

 catch (Exception e) {

12
6

 // Throwing an exception

System.out.println("Exception is caught");

 }

 }

}

// Main Class

class Multithread {

 public static void main(String[] args)

 {

int n = 8; // Number of threads

 for (inti = 0; i< n; i++) {

 Thread object= new Thread(new MultithreadingDemo());

object.start();

 }

 }

}

Output

Thread 13 is running

Thread 11 is running

Thread 12 is running

Thread 15 is running

Thread 14 is running

Thread 18 is running

Thread 17 is running

Thread 16 is running

 b)Does Java support thread priorities? demonstrate the priority setting in threads with suitable

example.

Each thread have a priority. Priorities are

represented by a number between 1 and 10.

In most cases, thread schedular schedules the

threads according to their priority (known as

preemptive scheduling). But it is not

guaranteed because it depends on JVM

specification that which scheduling it

chooses.

3 constants defined in Thread class:

1. public static int MIN_PRIORITY

12
7

2. public static int NORM_PRIORITY

3. public static int MAX_PRIORITY

Default priority of a thread is 5

(NORM_PRIORITY). The value of

MIN_PRIORITY is 1 and the value of

MAX_PRIORITY is 10.

Example of priority of a Thread:

Class TestMultiPriority1 extends Thread{

 Public void run(){

System.out.println(“running thread name is:”+Thread.currentThread().getName());

System.out.println(“running thread priority is:”+Thread.currentThread().getPriority());

 }

 Public static void main(String args[]){

 TestMultiPriority1 m1=new TestMultiPriority1();

 TestMultiPriority1 m2=new TestMultiPriority1();

 M1.setPriority(Thread.MIN_PRIORITY);

 M2.setPriority(Thread.MAX_PRIORITY);

 M1.start();

 M2.start();

 }

}

Output:

running thread name is:Thread-0

 running thread priority is:10

 running thread name is:Thread-1

 running thread priority is:1

5) Write a program that creates two threads. Fist thread prints the numbers from 1 to 100 and the other

thread prints the numbers from 100 to 1.

Class Ascending extends Thread

{

Public void run()

12
8

{

For(inti=1; i<=100;i++)

{

System.out.println(“Ascending Thread : “ + i);

}

}

}

Class Descending extends Thread

{

Public void run()

{

For(inti=100; i>0;i--)

{

System.out.println(“Descending Thread : “ + i);

}

}

}

Public class AscendingDescendingThread

{

Public static void main(String[] args)

12
9

{

New Ascending().start();

New Descending().start();

}

}

OUTPUT:

C:\javac AscendingDescendingThread.java

C:\java AscendingDescendingThread

Ascending Thread: 1

Ascending Thread: 2

Ascending Thread: 3

Ascending Thread : 4

Ascending Thread : 5

Ascending Thread : 6

Ascending Thread : 7

Ascending Thread : 8

Ascending Thread : 9

Ascending Thread : 10

Ascending Thread : 11

Ascending Thread : 12

Ascending Thread : 13

Ascending Thread : 14

13
0

Ascending Thread : 15

Ascending Thread : .

Ascending Thread : .

Ascending Thread : .

Ascending Thread : 100

Ascending Thread : 100

Ascending Thread : .

Ascending Thread : .

Descending Thread : 15

Descending Thread : 14

Descending Thread : 13

Descending Thread : 12

Descending Thread : 11

Descending Thread : 10

Descending Thread : 9

Descending Thread : 8

Descending Thread : 7

Descending Thread : 6

Descending Thread : 5

Descending Thread : 4

Descending Thread : 3

Descending Thread : 2

13
1

Descending Thread : 1

6) Describe the need of thread synchronization. How is it achieved in Java programming? Explain with a

suitable program

(or)**Describe producer-consumer pattern using inter-thread communication.

In computing, the producer-consumer problem (also known as the bounded-buffer problem) is a classic

example of a multi-process synchronization problem. The problem describes two processes, the producer

and the consumer, which share a common, fixed-size buffer used as a queue.

 The producer’s job is to generate data, put it into the buffer, and start again.

13
2

 At the same time, the consumer is consuming the data (i.e. removing it from the buffer), one piece at a

time.

Problem
To make sure that the producer won’t try to add data into the buffer if it’s full and that the consumer

won’t try to remove data from an empty buffer.

Solution

The producer is to either go to sleep or discard data if the buffer is full. The next time the consumer

removes an item from the buffer, it notifies the producer, who starts to fill the buffer again. In the same

way, the consumer can go to sleep if it finds the buffer to be empty. The next time the producer puts data

into the buffer, it wakes up the sleeping consumer.

An inadequate solution could result in a deadlock where both processes are waiting to be awakened.

Implementation of Producer Consumer Class

 A LinkedList list – to store list of jobs in queue.

 A Variable Capacity – to check for if the list is full or not

 A mechanism to control the insertion and extraction from this list so that we do not insert into list if it is

full or remove from it if it is empty.  }

import java.util.LinkedList;

public class Threadexample {

 public static void main(String[] args) throws InterruptedException

 {

 // Object of a class that has both produce()

 // and consume() methods

 final PC pc = new PC();

 // Create producer thread

 Thread t1 = new Thread(new Runnable() {

 @Override

 public void run()

 {

 try {

pc.produce();

 }

 catch (InterruptedException e) {

e.printStackTrace();

 }

 }

 });

 // Create consumer thread

 Thread t2 = new Thread(new Runnable() {

 @Override

13
3

 public void run()

 {

 try {

pc.consume();

 }

 catch (InterruptedException e) {

e.printStackTrace();

 }

 }

 });

 // Start both threads

 t1.start();

 t2.start();

 // t1 finishes before t2

 t1.join();

 t2.join();

 }

 // This class has a list, producer (adds items to list

 // and consumber (removes items).

 public static class PC {

 // Create a list shared by producer and consumer

 // Size of list is 2.

LinkedList<Integer> list = new LinkedList<>();

int capacity = 2;

 // Function called by producer thread

 public void produce() throws InterruptedException

 {

int value = 0;

 while (true) {

 synchronized (this)

 {

 // producer thread waits while list

 // is full

 while (list.size() == capacity)

 wait();

System.out.println("Producer produced-" + value);

 // to insert the jobs in the list

list.add(value++);

 // notifies the consumer thread that

 // now it can start consuming

13
4

 notify();

 // makes the working of program easier

 // to understand

Thread.sleep(1000);

 }

 }

 }

 // Function called by consumer thread

 public void consume() throws InterruptedException

 {

 while (true) {

 synchronized (this)

 {

 // consumer thread waits while list

 // is empty

 while (list.size() == 0)

 wait();

 // to retrive the ifrst job in the list

intval = list.removeFirst();

System.out.println("Consumer consumed-" + val);

 // Wake up producer thread

 notify();

 // and sleep

Thread.sleep(1000);

 }

 }

 }

 }

}

13
5

 UNIT-IV

1 .a) Give an account of Random collection class

Ans:

Methods Description

doubles() Returns an unlimited stream of pseudorandom double values.

ints() Returns an unlimited stream of pseudorandom int values.

longs() Returns an unlimited stream of pseudorandom long values.

next() Generates the next pseudorandom number.

nextBoolean() Returns the next uniformly distributed pseudorandom boolean

value from the random number generator's sequence

nextByte() Generates random bytes and puts them into a specified byte

array.

nextDouble() Returns the next pseudorandom Double value between 0.0 and

1.0 from the random number generator's sequence

nextFloat() Returns the next uniformly distributed pseudorandom Float

value between 0.0 and 1.0 from this random number

generator's sequence

nextGaussian() Returns the next pseudorandom Gaussian double value with

mean 0.0 and standard deviation 1.0 from this random number

generator's sequence.

nextInt() Returns a uniformly distributed pseudorandom int value

https://www.javatpoint.com/post/java-random-doubles-method
https://www.javatpoint.com/post/java-random-next-method
https://www.javatpoint.com/post/java-random-nextboolean-method
https://www.javatpoint.com/post/java-random-nextbytes-method
https://www.javatpoint.com/post/java-random-nextdouble-method
https://www.javatpoint.com/post/java-random-nextfloat-method
https://www.javatpoint.com/post/java-random-nextgaussian-method
https://www.javatpoint.com/post/java-random-nextint-method

13
6

 Java Random

class is used to

generate a

stream of

pseudorandom

numbers. The

algorithms

implemented by Random class use a protected utility method than can supply up to 32 pseudorandomly generated

bits on each invocation.

1.b) Discuss the methods of Stack class

Ans. The Stack class in java has the following methods.

S.No. Methods with Description

1 Object push(Object element)

It pushes the element onto the stack and returns the same.

2 Object pop()

It returns the element on the top of the stack and removes the same.

3 int search(Object element)

If element found, it returns offset from the top. Otherwise, -1 is

returned.

4 Object peek()

It returns the element on the top of the stack.

generated from this random number generator's sequence

nextLong() Returns the next uniformly distributed pseudorandom long

value from the random number generator's sequence.

setSeed() Sets the seed of this random number generator using a single

long seed.

https://www.javatpoint.com/post/java-random-nextlong-method
https://www.javatpoint.com/post/java-random-setseed-method

13
7

S.No. Methods with Description

5 boolean empty()

It returns true if the stack is empty, otherwise returns false.

1. c) What is the need of Generics?

Ans. There are mainly 3 advantages of generics. They are as follows:

1) Type-safety: We can hold only a single type of objects in generics. It doesn?t allow to store other objects.

Without Generics, we can store any type of objects.

1. List list = new ArrayList();

2. list.add(10);

3. list.add("10");

4. With Generics, it is required to specify the type of object we need to store.

5. List<Integer> list = new ArrayList<Integer>();

6. list.add(10);

7. list.add("10");// compile-time error

2) Type casting is not required: There is no need to typecast the object.

Before Generics, we need to type cast.

1. List list = new ArrayList();

2. list.add("hello");

3. String s = (String) list.get(0);//typecasting

4. After Generics, we don't need to typecast the object.

5. List<String> list = new ArrayList<String>();

6. list.add("hello");

13
8

7. String s = list.get(0);

3) Compile-Time Checking: It is checked at compile time so problem will not occur at runtime. The good

programming strategy says it is far better to handle the problem at compile time than runtime.

1. List<String> list = new ArrayList<String>();

2. list.add("hello");

3. list.add(32);//Compile Time Error

Syntax to use generic collection

1. ClassOrInterface<Type>

Example to use Generics in java

1. ArrayList<String>

2.a) Differentiate between ArrayList and a Vector? Why ArrayList is faster than Vector? Explain.

Ans.

ArrayList and Vector both implements List interface and maintains insertion order.

However, there are many differences between ArrayList and Vector classes that are given below.

ArrayList Vector

1) ArrayList is not synchronized. Vector is synchronized.

13
9

2.b)Write a

program

which stores

a list of

strings in an

Array List

and then

displays the

contents of

the list

Ans.

importjava.ut

il.*;

classJavaExa

mple{

publicstaticv

oid

main(Stringa

rgs[]){

ArrayList<String>alist=newArrayList<String>();

alist.add("Steve");

alist.add("Tim");

alist.add("Lucy");

alist.add("Pat");

alist.add("Angela");

alist.add("Tom");

//displaying elements

System.out.println(alist);

2) ArrayList increments 50% of current

array size if the number of elements

exceeds from its capacity.

Vector increments 100% means

doubles the array size if the total

number of elements exceeds than its

capacity.

3) ArrayList is not a legacy class. It is

introduced in JDK 1.2.

Vector is a legacy class.

4) ArrayList is fast because it is non-

synchronized.

Vector is slow because it is

synchronized, i.e., in a

multithreading environment, it holds

the other threads in runnable or non-

runnable state until current thread

releases the lock of the object.

5) ArrayList uses the Iterator interface to

traverse the elements.

A Vector can use

the Iterator interface

or Enumeration interface to traverse

the elements.

14
0

//Adding "Steve" at the fourth position

alist.add(3, "Steve");

//displaying elements

System.out.println(alist);

 }

}

3.a) What is Java Collections Framework? List out some benefits of Collections framework and explain.

Ans.

14
1

Java Collections are used in every programming language and initial java release contained few classes for

collections: Vector, Stack, Hashtable, Array. But looking at the larger scope and usage, Java 1.2 came up with

Collections Framework that group all the collections interfaces, implementations and algorithms.

Java Collections have come through a long way with usage of Generics and Concurrent Collection classes for

thread-safe operations. It also includes blocking interfaces and their implementations in java concurrent package.

Some of the benefits of collections framework are:

 Reduced development effort by using core collection classes rather than implementing our own collection

classes.

 Code quality is enhanced with the use of well tested collections framework classes.

 Reduced effort for code maintenance by using collection classes shipped with JDK.

 Reusability and Interoperability

3.b) What is the importance of hashCode() and equals() methods?

https://crunchify.com/category/java-tutorials/
https://crunchify.com/category/java-tutorials/

14
2

Ans.The equals() and hashcode() are the two important methods provided by the Object class for comparing

objects. Since the Object class is the parent class for all Java objects, hence all objects inherit the default

implementation of these two methods. In this topic, we will see the detailed description of equals() and

hashcode() methods, how they are related to each other, and how we can implement these two methods in Java.

Java equals()

o The java equals() is a method of lang.Object class, and it is used to compare two objects.

o To compare two objects that whether they are the same, it compares the values of both the object's

attributes.

o By default, two objects will be the same only if stored in the same memory location.

Syntax:

1. public boolean equals(Object obj)

Parameter:

obj: It takes the reference object as the parameter, with which we need to make the comparison.

Returns:

It returns the true if both the objects are the same, else returns false.

Java hashcode()

o A hashcode is an integer value associated with every object in Java, facilitating the hashing in hash tables.

o To get this hashcode value for an object, we can use the hashcode() method in Java. It is the

means hashcode() method that returns the integer hashcode value of the given object.

o Since this method is defined in the Object class, hence it is inherited by user-defined classes also.

o The hashcode() method returns the same hash value when called on two objects, which are equal

according to the equals() method. And if the objects are unequal, it usually returns different hash values.

Syntax:

1. public int hashCode()

Returns:

https://www.javatpoint.com/java-tutorial

14
3

It returns the hash code value for the given objects.

4.What is difference between

a) ArrayList and LinkedList

Ans.

4.b Ans.

The HashMap and HashSet in Java are the most popular Collection classes. Both are used for the data structure.

The following table describes the difference between HashMap and HashSet:

Basis HashMap HashSet

ArrayList LinkedList

1) ArrayList internally uses a dynamic array to

store the elements.

LinkedList internally uses

a doubly linked list to

store the elements.

2) Manipulation with ArrayList is slow because

it internally uses an array. If any element is

removed from the array, all the bits are shifted

in memory.

Manipulation with

LinkedList is faster than

ArrayList because it uses a

doubly linked list, so no bit

shifting is required in

memory.

3) An ArrayList class can act as a list only

because it implements List only.

LinkedList class can act as

a list and queue both

because it implements List

and Deque interfaces.

4) ArrayList is better for storing and

accessing data.

LinkedList is better for

manipulating data.

14
4

Definition Java

HashMap is

a hash table

based

implementati

on of Map

interface.

HashSet is a Set. It creates a

collection that uses a hash

table for storage.

Implementation HashMap

implements

Map,

Cloneable,

and

Serializable

interface es.

HashSet implements Set,

Cloneable, Serializable,

Iterable and Collection interf

aces.

Stores In HashMap

we store

a key-value

pair. It

maintains

the mapping

of key and

value.

In HashSet, we store objects.

Duplicate values It does not

allow duplic

ate keys,

but duplicat

e

values are al

It does not allow duplicate

values.

14
5

lowed.

Null values It can

contain

a single null

key and mul

tiple null

values.

It can contain a single null

value.

Method of

insertion

HashMap

uses

the put() me

thod to add

the elements

in the

HashMap.

HashSet uses

the add() method to add

elements in the HashSet.

Performance HashMap

is faster/ tha

n HashSet

because

values are

associated

with a

unique key.

HashSet is slower than

HashMap because the

member object is used for

calculating hashcode value,

which can be same for two

objects.

The Number of

objects

Only one obj

ect is created

There are two objects created

during put operation, one

14
6

during the

add

operation.

for key and one for value.

Storing

Mechanism

HashMap

internally

uses hashin

g to store

objects.

HashSet internally uses

a HashMap object to store

objects.

Uses Always

prefer when

we do not

maintain

the uniquen

ess.

It is used when we need to

maintain the uniqueness of

data.

Example {a->4, b->9,

c-

>5} Where a

, b,

c are keys an

d 4, 9,

5 are values

associated

with key.

{6, 43, 2, 90, 4} It denotes a

set.

4.c

S.No List Set

14
7

1. The list implementation

allows us to add the same or

duplicate elements.

The set implementation doesn't

allow us to add the same or

duplicate elements.

2. The insertion order is

maintained by the List.

It doesn't maintain the insertion

order of elements.

3. List allows us to add any

number of null values.

Set allows us to add at least one

null value in it.

4. The List implementation

classes are LinkedList and

ArrayList.

The Set implementation classes are

TreeSet, HashSet and

LinkedHashSet.

5. We can get the element of a

specified index from the list

using the get() method.

We cannot find the element from

the Set based on the index because

it doesn't provide any get method().

6. It is used when we want to

frequently access the

elements by using the index.

It is used when we want to design a

collection of distinct elements.

7. The method of List interface

listiterator() is used to iterate

the List elements.

The iterator is used when we need

to iterate the Set elements.

4.d) Iterator and ListIterator

Sr.

No.

Key Iterator ListIterator

14
8

Sr.

No.

Key Iterator ListIterator

1

Applicable Iterator can be used to traverse any

collection irrespective of the type of

collection.

List iterator can

only be used to

iterate only List

collection

implemented

classes like

arraylist,linkedlist

etc.

2

Calling As mentioned Iterator must be used to

enumerate elements in all Collections

implemented interfaces like Set, List,

Queue, Deque and also in all

implemented classes of Map interface.

Iterator object can be created by

calling iterator() method of Collection

interface.

On the other

hand, ListIterator

must be used

when we want to

enumerate

elements of

List.The object of

ListIterator can

be created by

calling

listIterator()

method present in

List interface.

3
Data

traverse

Data traverse in case of the iterator is

possible only in one direction as

List iterator could

traverses both in

14
9

Sr.

No.

Key Iterator ListIterator

Iterator can traverse in the forward

direction only

forward and

backward

directions which

makes data

traverse in both

directions.

4

Deletion The deletion of an element is not

allowed in the case of the iterator.

ListIterator can

replace an

element in list

collection.

5

Addition The addition of an element is not

allowed in case of an iterator as it

throws

ConcurrentModificationException.

ListIterator can

add an element in

list collection any

time easily.

6

Modification Modification of an element is not

allowed in case of an iterator as it

throws

ConcurrentModificationException.

ListIterator can

modify an

element in list

collection any

time easily by

calling set()

method.

15
0

Sr.

No.

Key Iterator ListIterator

7

Index of

element

One can't get the index of the traversed

element in collection while using an

iterator.

ListIterator has

methods like

nextIndex() and

previousIndex()

to obtain indexes

of elements at

any time while

traversing List.

4.e) Comparable and Comparator interface

Comparable Comparator

1) Comparable provides a single

sorting sequence. In other words,

we can sort the collection on the

basis of a single element such as

id, name, and price.

The Comparator provides multiple sorting

sequences. In other words, we can sort the

collection on the basis of multiple elements such

as id, name, and price etc.

2) Comparable affects the

original class, i.e., the actual

class is modified.

Comparator doesn't affect the original class, i.e.,

the actual class is not modified.

15
1

3) Comparable

provides compareTo()

method to sort elements.

Comparator provides compare() method to sort

elements.

4) Comparable is present

in java.lang package.

A Comparator is present in the java.util package.

5) We can sort the list elements of

Comparable type

by Collections.sort(List) method.

We can sort the list elements of Comparator type

by Collections.sort(List, Comparator) method.

5) What is the purpose of BitSet class and Calendar classes? What is the functionality of the following

functions of BitSet class: cardinality() , flip() and intersects()

Ans.

The BitSet class creates a special type of array that holds bit values. The BitSet array can increase in size as

needed. This makes it similar to a vector of bits. This is a legacy class but it has been completely re-engineered in

Java 2, version 1.4.

The BitSet defines the following two constructors.

int cardinality()

Returns the number of set bits in the invoking object.

void flip(int index)

Reverses the bit specified by the index.

void flip(int startIndex, int endIndex)

Reverses the bits from startIndex to endIndex.

boolean intersects(BitSet bitSet)

15
2

Returns true if at least one pair of corresponding bits within the invoking object and bitSet are 1.

Calendar class in Java is an abstract class that provides methods for converting date between a specific instant

in time and a set of calendar fields such as MONTH, YEAR, HOUR, etc. It inherits Object class and

implements the Comparable, Serializable, Cloneable interfaces.

As it is an Abstract class, so we cannot use a constructor to create an instance. Instead, we will have to use the

static method Calendar.getInstance() to instantiate and implement a sub-class.

 Calendar.getInstance(): return a Calendar instance based on the current time in the default time zone with

the default locale.

 Calendar.getInstance(TimeZone zone)

 Calendar.getInstance(Locale aLocale)

 Calendar.getInstance(TimeZone zone, Locale aLocale)

6. How an Hashtable can change the iterator? Explain.

Ans.

First of all, we cannot iterate a Map directly using iterators, because Map are not Collection. Also before going

further, you must know a little-bit about Map.Entry<K, V> interface.

Since all maps in Java implement Map interface, following techniques will work for any map implementation

(HashMap, TreeMap, LinkedHashMap, Hashtable, etc.)

Hashtable will change the iterator by using Enumerator interface.Yes,we can iterate a hashmap using the

entrySet() method.

1. Iterating over Map.entrySet() using For-Each loop :

Map.entrySet() method returns a collection-view(Set<Map.Entry<K, V>>) of the mappings contained in this

map. So we can iterate over key-value pair using getKey() and getValue() methods of Map.Entry<K, V>. This

method is most common and should be used if you need both map keys and values in the loop. Below is the

java program to demonstrate it.

// Java program to demonstrate iteration over

https://www.geeksforgeeks.org/iterators-in-java/
https://www.geeksforgeeks.org/collections-in-java-2/
https://docs.oracle.com/javase/7/docs/api/java/util/Map.Entry.html
https://www.geeksforgeeks.org/map-interface-java-examples/
https://www.geeksforgeeks.org/java-util-hashmap-in-java/
https://www.geeksforgeeks.org/hashmap-treemap-java/
https://www.geeksforgeeks.org/linkedhashmap-class-java-examples/
https://www.geeksforgeeks.org/java-util-hashtable-class-java/
https://docs.oracle.com/javase/7/docs/api/java/util/Map.Entry.html

15
3

// Map.entrySet() entries using for-each loop

import java.util.Map;

import java.util.HashMap;

class IterationDemo

{

 public static void main(String[] arg)

 {

 Map<String,String> gfg = new HashMap<String,String>();

 // enter name/url pair

 gfg.put("GFG", "geeksforgeeks.org");

 gfg.put("Practice", "practice.geeksforgeeks.org");

 gfg.put("Code", "code.geeksforgeeks.org");

 gfg.put("Quiz", "quiz.geeksforgeeks.org");

 // using for-each loop for iteration over Map.entrySet()

 for (Map.Entry<String,String> entry : gfg.entrySet())

 System.out.println("Key = " + entry.getKey() +

 ", Value = " + entry.getValue());

 }

}

7. Explain different ways to iterate over a list.

Ans.

There are 7 ways you can iterate through List

1. Simple For loop.

2. Enhanced For loop.

3. Iterator.

4. ListIterator.

15
4

5. While loop.

6. Iterable.forEach() util.

7. Stream.forEach() util.

package crunchify.com.tutorials;

 import java.util.*;

public class CrunchifyIterateThroughList {

 public static void main(String[] argv) {

 // create list

 List<String> crunchifyList = new ArrayList<String>();

 // add 4 different values to list

 crunchifyList.add("Facebook");

 crunchifyList.add("Paypal");

 crunchifyList.add("Google");

 crunchifyList.add("Yahoo");

 // Other way to define list is - we will not use this list :)

 List<String> crunchifyListNew = Arrays.asList("Facebook", "Paypal", "Google", "Yahoo");

 // Simple For loop

 System.out.println("==============> 1. Simple For loop Example.");

 for (int i = 0; i < crunchifyList.size(); i++) {

 System.out.println(crunchifyList.get(i));

 }

 // New Enhanced For loop

 System.out.println("\n==============> 2. New Enhanced For loop Example..");

 for (String temp : crunchifyList) {

 System.out.println(temp);

 }

15
5

 // Iterator - Returns an iterator over the elements in this list in proper sequence.

 System.out.println("\n==============> 3. Iterator Example...");

 Iterator<String> crunchifyIterator = crunchifyList.iterator();

 while (crunchifyIterator.hasNext()) {

 System.out.println(crunchifyIterator.next());

 }

 // ListIterator - traverse a list of elements in either forward or backward order

 // An iterator for lists that allows the programmer to traverse the list in either direction, modify the list during

iteration,

 // and obtain the iterator's current position in the list.

 System.out.println("\n==============> 4. ListIterator Example...");

 ListIterator<String> crunchifyListIterator = crunchifyList.listIterator();

 while (crunchifyListIterator.hasNext()) {

 System.out.println(crunchifyListIterator.next());

 }

 // while loop

 System.out.println("\n==============> 5. While Loop Example....");

 int i = 0;

 while (i < crunchifyList.size()) {

 System.out.println(crunchifyList.get(i));

 i++;

 }

 // Iterable.forEach() util: Returns a sequential Stream with this collection as its source

 System.out.println("\n==============> 6. Iterable.forEach() Example....");

 crunchifyList.forEach((temp) -> {

 System.out.println(temp);

15
6

 });

 // collection Stream.forEach() util: Returns a sequential Stream with this collection as its source

 System.out.println("\n==============> 7. Stream.forEach() Example....");

 crunchifyList.stream().forEach((crunchifyTemp) -> System.out.println(crunchifyTemp));

 }

}

Output:

==============> 1. Simple For loop Example.

Facebook

Paypal

Google

Yahoo

==============> 2. New Enhanced For loop Example..

Facebook

Paypal

Google

Yahoo

==============> 3. Iterator Example...

Facebook

Paypal

Google

Yahoo

==============> 4. ListIterator Example...

15
7

Facebook

Paypal

Google

Yahoo

==============> 5. While Loop Example....

Facebook

Paypal

Google

Yahoo

==============> 6. Iterable.forEach() Example....

Facebook

Paypal

Google

Yahoo

==============> 7. Stream.forEach() Example....

Facebook

Paypal

Google

Yahoo

Process finished with exit code 0

15
8

UNIT-V

1a) What is the significance of layout managers? Discuss briefly various types of layout managers.

Ans.

The Layout managers enable us to control the way in which visual components are arranged in the GUI forms by

determining the size and position of components within the containers.

Types of LayoutManager

There are 6 layout managers in Java

 FlowLayout: It arranges the components in a container like the words on a page. It fills the top line

from left to right and top to bottom. The components are arranged in the order as they are added i.e. first

components appears at top left, if the container is not wide enough to display all the components, it is

wrapped around the line. Vertical and horizontal gap between components can be controlled. The

components can be left, center or right aligned.

 BorderLayout: It arranges all the components along the edges or the middle of the container i.e. top,

bottom, right and left edges of the area. The components added to the top or bottom gets its preferred

height, but its width will be the width of the container and also the components added to the left or right

gets its preferred width, but its height will be the remaining height of the container. The components

added to the center gets neither its preferred height or width. It covers the remaining area of the container.

 GridLayout: It arranges all the components in a grid of equally sized cells, adding them from the left to

right and top to bottom. Only one component can be placed in a cell and each region of the grid will have

the same size. When the container is resized, all cells are automatically resized. The order of placing the

components in a cell is determined as they were added.

 GridBagLayout: It is a powerful layout which arranges all the components in a grid of cells and

maintains the aspect ration of the object whenever the container is resized. In this layout, cells may be

different in size. It assigns a consistent horizontal and vertical gap among components. It allows us to

specify a default alignment for components within the columns or rows.

 BoxLayout: It arranges multiple components in either vertically or horizontally, but not both. The

components are arranged from left to right or top to bottom. If the components are aligned horizontally,

the height of all components will be the same and equal to the largest sized components. If the

components are aligned vertically, the width of all components will be the same and equal to the largest

width components.

 CardLayout: It arranges two or more components having the same size. The components are arranged in

a deck, where all the cards of the same size and the only top card are visible at any time. The first

component added in the container will be kept at the top of the deck. The default gap at the left, right, top

and bottom edges are zero and the card components are displayed either horizontally or vertically.

 1. b) Give an overview of JButton class and subclasses of JButton class of swing package.

Ans.

15
9

The class JButton is an implementation of a push button. This component has a label and generates an event

when pressed. It can also have an Image.

Class Declaration

Following is the declaration for javax.swing.JButton class −

public class JButton

 extends AbstractButton

 implements Accessible

Class Constructors

Sr.No. Constructor & Description

1 JButton()

Creates a button with no set text or icon.

2
JButton(Action a)

Creates a button where properties are taken from the Action supplied.

3
JButton(Icon icon)

Creates a button with an icon.

4
JButton(String text)

Creates a button with the text.

5
JButton(String text, Icon icon)

Creates a button with an initial text and an icon.

Class Methods

Sr.No. Method & Description

1 AccessibleContext getAccessibleContext()

Gets the AccessibleContext associated with this JButton.

16
0

2
String getUIClassID()

Returns a string that specifies the name of the L&F class which renders this component.

3

boolean isDefaultButton()

Gets the value of the defaultButton property, which if true means that this button is the

current default button for its JRootPane.

4
boolean isDefaultCapable()

Gets the value of the defaultCapable property.

5
protected String paramString()

Returns a string representation of this JButton.

6

void removeNotify()

Overrides JComponent.removeNotify to check if this button is currently set as the

default button on the RootPane. And if so, sets the RootPane's default button to null to

ensure the RootPane doesn't hold onto an invalid button reference.

7

void setDefaultCapable(boolean defaultCapable)

Sets the defaultCapable property, which determines whether this button can be made

the default button for its root pane.

8
void updateUI()

Resets the UI property to a value from the current look and feel.

Swing defines four types of buttons: JButton, JToggleButton, JCheckBox, and JRadioButton. All

are subclasses of the AbstractButton class, which extends JComponent. Thus, all buttons share a set of common

traits. Here, di, pi, si, and ri are the icons to be used for the indicated purpose

JToggleButton

JToggleButton is used to create toggle button, it is two-states button to switch on or off

.

Java JCheckBox

16
1

The JCheckBox class is used to create a checkbox. It is used to turn an option on (true) or off (false). Clicking on

a CheckBox changes its state from "on" to "off" or from "off" to "on ".It inherits JToggleButton class.

Java JRadioButton

The JRadioButton class is used to create a radio button. It is used to choose one option from multiple options. It is

widely used in exam systems or quiz.

2a)Explain delegation event model.

Ans.

Delegation Event Model in Java

The Delegation Event model is defined to handle events in GUI programming languages. The GUI stands for

Graphical User Interface, where a user graphically/visually interacts with the system.

The GUI programming is inherently event-driven; whenever a user initiates an activity such as a mouse activity,

clicks, scrolling, etc., each is known as an event that is mapped to a code to respond to functionality to the user.

This is known as event handling.

In this section, we will discuss event processing and how to implement the delegation event model in Java. We

will also discuss the different components of an Event Model.

Event Processing in Java

Java support event processing since Java 1.0. It provides support for AWT (Abstract Window Toolkit), which is

an API used to develop the Desktop application. In Java 1.0, the AWT was based on inheritance. To catch and

process GUI events for a program, it should hold subclass GUI components and override action() or

handleEvent() methods. The below image demonstrates the event processing.

https://www.javatpoint.com/java-jtogglebutton
https://www.javatpoint.com/programming-language
https://www.javatpoint.com/gui-full-form
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-awt

16
2

But, the modern approach for event processing is based on the Delegation Model. It defines a standard and

compatible mechanism to generate and process events. In this model, a source generates an event and forwards it

to one or more listeners. The listener waits until it receives an event. Once it receives the event, it is processed by

the listener and returns it. The UI elements are able to delegate the processing of an event to a separate function.

The key advantage of the Delegation Event Model is that the application logic is completely separated from the

interface logic.

In this model, the listener must be connected with a source to receive the event notifications. Thus, the events will

only be received by the listeners who wish to receive them. So, this approach is more convenient than the

inheritance-based event model (in Java 1.0).

In the older model, an event was propagated up the containment until a component was handled. This needed

components to receive events that were not processed, and it took lots of time. The Delegation Event model

overcame this issue.

Basically, an Event Model is based on the following three components:

o Events

o Events Sources

o Events Listeners

2.b) Write an Applet to draw a smiley picture accept user name as a parameter and display welcome

message.

1. import java.applet.Applet;

16
3

2. import java.awt.*;

3.

4. public class SmileyExc extends Applet {

5.

6. public void paint(Graphics g) {

7.

8. g.setColor(Color.yellow);

9. g.fillOval(20,20,150,150); // For face

10. g.setColor(Color.black);

11. g.fillOval(50,60,15,25); // Left Eye

12. g.fillOval(120,60,15,25); // Right Eye

13. int x[] = {95,85,106,95};

14. int y[] = {85,104,104,85};

15. g.drawPolygon(x, y, 4); // Nose

16. g.drawArc(55,95,78,50,0,-180); // Smile

17. g.drawLine(50,126,60,116); // Smile arc1

18. g.drawLine(128,115,139,126); // Smile arc2

19. }

20. }

21.

22. /* <applet code="SmileyExc.class" width="200" height="200">

23. </applet>

24. */

3a) Describe about various components in AWT and SWINGS

Ans.

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based applications in java.

Java AWT components are platform-dependent i.e. components are displayed according to the view of operating

system. AWT is heavyweight i.e. its components are using the resources of OS.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea,

RadioButton, CheckBox, Choice, List etc.

components in AWT

Container

The Container is a component in AWT that can contain another components like buttons, textfields, labels etc.

https://www.javatpoint.com/package
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-awt-textfield
https://www.javatpoint.com/java-awt-label
https://www.javatpoint.com/java-awt-textarea
https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/java-awt-choice
https://www.javatpoint.com/java-awt-list
https://www.javatpoint.com/java-awt-button

16
4

The classes that extends Container class are known as container such as Frame, Dialog and Panel.

Window

The window is the container that have no borders and menu bars. You must use frame, dialog or another window

for creating a window.

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can have other components like button,

textfield etc.

Frame

The Frame is the container that contain title bar and can have menu bars. It can have other components like

button, textfield etc.

Swing is the collection of user interface components for Java programs. It is part of Java Foundation classes that

are referred to as JFC. In simple words, Swing is the graphical user interface toolkit that is used for developing

windows based java applications or programs. Swing is the successor of AWT which is known as Abstract

window toolkit API for Java and AWT components are mainly heavyweight.

The components are lightweight as compared to AWT components. It provides a good interface to the user for all

the platforms. It is not specifically for one platform. The components are written in Java and platform-

independent as well. The Java foundation classes were first appeared in 1997 and then later on it is termed as

Swing. To use the swing in java, javax. swing package needs to be used or import. It is also known as Java Swing

Below are the different components of swing in java:

1. ImageIcon

The ImageIcon component creates an icon sized-image from an image residing at the source URL.

2. JButton

JButton class is used to create a push-button on the UI. The button can contain some display text or image. It

generates an event when clicked and double-clicked. A JButton can be implemented in the application by calling

one of its constructors.

https://www.educba.com/jbutton-in-java/

16
5

3. JLabel

JLabel class is used to render a read-only text label or images on the UI. It does not generate any event.

4. JTextField

JTextField renders an editable single-line text box. A user can input non-formatted text in the box. To initialize

the text field, call its constructor and pass an optional integer parameter to it. This parameter sets the width of the

box measured by the number of columns. It does not limit the number of characters that can be input in the box.

5. JTextArea

JTextArea class renders a multi-line text box. Similar to the JTextField, a user can input non-formatted text in the

field. The constructor for JTextArea also expects two integer parameters which define the height and width of the

text-area in columns. It does not restrict the number of characters that the user can input in the text-area.

6. JPasswordField

JPasswordField is a subclass of JTextField class. It renders a text-box that masks the user input text with bullet

points. This is used for inserting passwords into the application.

7. JCheckBox

JCheckBox renders a check-box with a label. The check-box has two states – on/off. When selected, the state is

on and a small tick is displayed in the box.

8. JRadioButton

JRadioButton is used to render a group of radio buttons in the UI. A user can select one choice from the group.

9. JList

JList component renders a scrollable list of elements. A user can select a value or multiple values from the list.

This select behavior is defined in the code by the developer.

10. JComboBox

JComboBox class is used to render a dropdown of the list of options.

3.b)Write an applet program to handle various mouse events and key events

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class MouseApplet extends Applet implements MouseListener

{

 String msg="Initial Message";

 public void init()

 {

 addMouseListener(this);

https://www.educba.com/jlabel-in-java/
https://www.educba.com/jtextfield-in-java/
https://www.educba.com/jtextarea-in-java/
https://www.educba.com/jpasswordfield/
https://www.educba.com/java-user-input/
https://www.educba.com/javafx-radio-button/
https://www.educba.com/jcombobox-in-java/

16
6

 }

 public void mouseClicked(MouseEvent me)

 {

 msg = "Mouse Clicked";

 repaint();

 }

 public void mousePressed(MouseEvent me)

 {

 msg = "Mouse Pressed";

 repaint();

 }

 public void mouseReleased(MouseEvent me)

 {

 msg = "Mouse Released";

 repaint();

 }

 public void mouseEntered(MouseEvent me)

 {

 msg = "Mouse Entered";

 repaint();

 }

 public void mouseExited(MouseEvent me)

 {

 msg = "Mouse Exited";

 repaint();

 }

 public void paint(Graphics g)

 {

 g.drawString(msg,20,20);

 }

}

/*

<applet code="MouseApplet" height="300" width="500">

</applet>

*/

4 a) What are the different types of Event listeners supported by java.

Event Classes Listener Interfaces

ActionEvent ActionListener

MouseEvent MouseListener and MouseMotionListener

MouseWheelEvent MouseWheelListener

16
7

KeyEvent KeyListener

ItemEvent ItemListener

TextEvent TextListener

AdjustmentEvent AdjustmentListener

WindowEvent WindowListener

ComponentEvent ComponentListener

ContainerEvent ContainerListener

FocusEvent FocusListener

 4.b)Write a java program that design scientific calculator using AWT

1. import java.awt.*;

2. import java.awt.event.*;

3. import javax.swing.*;

4. import javax.swing.event.*;

5.

6. class Calculator extends JFrame {

7. private final Font BIGGER_FONT = new Font("monspaced",Font.PLAIN, 20);

8. private JTextField textfield;

9. private boolean number = true;

10. private String equalOp = "=";

11. private CalculatorOp op = new CalculatorOp();

12.
13. public Calculator() {

14. textfield = new JTextField("", 12);

15. textfield.setHorizontalAlignment(JTextField.RIGHT);

16. textfield.setFont(BIGGER_FONT);

17. ActionListener numberListener = new NumberListener();

18. String buttonOrder = "1234567890 ";

19. JPanel buttonPanel = new JPanel();

20. buttonPanel.setLayout(new GridLayout(4, 4, 4, 4));

21. for (int i = 0; i < buttonOrder.length(); i++) {

22. String key = buttonOrder.substring(i, i+1);

23. if (key.equals(" ")) {

24. buttonPanel.add(new JLabel(""));

25. } else {

26. JButton button = new JButton(key);

27. button.addActionListener(numberListener);

16
8

28. button.setFont(BIGGER_FONT);

29. buttonPanel.add(button);

30. }

31. }

32. ActionListener operatorListener = new OperatorListener();

33. JPanel panel = new JPanel();

34. panel.setLayout(new GridLayout(4, 4, 4, 4));

35. String[] opOrder = {"+", "-", "*", "/","=","C","sin","cos","log"};

36. for (int i = 0; i < opOrder.length; i++) {

37. JButton button = new JButton(opOrder[i]);

38. button.addActionListener(operatorListener);

39. button.setFont(BIGGER_FONT);

40. panel.add(button);

41. }

42. JPanel pan = new JPanel();

43. pan.setLayout(new BorderLayout(4, 4));

44. pan.add(textfield, BorderLayout.NORTH);

45. pan.add(buttonPanel , BorderLayout.CENTER);

46. pan.add(panel , BorderLayout.EAST);

47. this.setContentPane(pan);

48. this.pack();

49. this.setTitle("Calculator");

50. this.setResizable(false);

51. }

52. private void action() {

53. number = true;

54. textfield.setText("");

55. equalOp = "=";

56. op.setTotal("");

57. }

58. class OperatorListener implements ActionListener {

59. public void actionPerformed(ActionEvent e) {

60. String displayText = textfield.getText();

61. if (e.getActionCommand().equals("sin"))

62. {

63. textfield.setText("" + Math.sin(Double.valueOf(displayText).doubleValue()));

64.
65. }else

66. if (e.getActionCommand().equals("cos"))

67. {

68. textfield.setText("" + Math.cos(Double.valueOf(displayText).doubleValue()));

69.
70. }

71. else

72. if (e.getActionCommand().equals("log"))

16
9

73. {

74. textfield.setText("" + Math.log(Double.valueOf(displayText).doubleValue()));

75.
76. }

77. else if (e.getActionCommand().equals("C"))

78. {

79. textfield.setText("");

80. }

81.
82. else

83. {

84. if (number)

85. {

86.
87. action();

88. textfield.setText("");

89.
90. }

91. else

92. {

93. number = true;

94. if (equalOp.equals("="))

95. {

96. op.setTotal(displayText);

97. }else

98. if (equalOp.equals("+"))

99. {

100. op.add(displayText);

101. }

102. else if (equalOp.equals("-"))

103. {

104. op.subtract(displayText);

105. }

106. else if (equalOp.equals("*"))

107. {

108. op.multiply(displayText);

109. }

110. else if (equalOp.equals("/"))

111. {

112. op.divide(displayText);

113. }

114.

115. textfield.setText("" + op.getTotalString());

116. equalOp = e.getActionCommand();

117. }

17
0

118. }

119. }

120. }

121. class NumberListener implements ActionListener {

122. public void actionPerformed(ActionEvent event) {

123. String digit = event.getActionCommand();

124. if (number) {

125. textfield.setText(digit);

126. number = false;

127. } else {

128. textfield.setText(textfield.getText() + digit);

129. }

130. }

131. }

132. public class CalculatorOp {

133. private int total;

134. public CalculatorOp() {

135. total = 0;

136. }

137. public String getTotalString() {

138. return ""+total;

139. }

140. public void setTotal(String n) {

141. total = convertToNumber(n);

142. }

143. public void add(String n) {

144. total += convertToNumber(n);

145. }

146. public void subtract(String n) {

147. total -= convertToNumber(n);

148. }

149. public void multiply(String n) {

150. total *= convertToNumber(n);

151. }

152. public void divide(String n) {

153. total /= convertToNumber(n);

154. }

155. private int convertToNumber(String n) {

156. return Integer.parseInt(n);

157. }

158. }

159. }

160. class SwingCalculator {

161. public static void main(String[] args) {

162. JFrame frame = new Calculator();

17
1

163. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

164. frame.setVisible(true);

165. }

166. }

5 a) Is Applet more secure than application program? Justify your answer

Ans.

An applet is executed in a more restricted environment with more security restrictions. They can only access the

browser specific services. An application can access data and resources available on the system without

any security restrictions

Java Application Java Applet

Applications are just like a Java programs

that can be execute independently without

using the web browser.

Applets are small Java programs that are designed to be

included with the HTML web document. They require a

Java-enabled web browser for execution.

Application program requires a main

function for its execution. Applet does not require a main function for its execution.

Java application programs have the full

access to the local file system and network. Applets don’t have local disk and network access.

Applications can access all kinds of

resources available on the system.

Applets can only access the browser specific services.

They don’t have access to the local system.

Applications can executes the programs from

the local system. Applets cannot execute programs from the local machine.

An application program is needed to perform

some task directly for the user.

An applet program is needed to perform small tasks or the

part of it.

5.b)Why swing components are preferred over AWT components?

Swing is the latest GUI toolkit, and provides a richer set of interface components than the AWT. In

addition, Swing components offer the following advantages over AWT components: The behavior and

appearance of Swing components is consistent across platforms, whereas AWT components will differ from

platform to platform.

Each ION Java component is shipped in two forms, one built on AWT classes, the other on Swing classes. This

section discusses the difference between AWT and Swing, the advantages and disadvantages of each, and how to

distinguish between the ION AWT classes and the ION Swing classes.

17
2

AWT and Swing are both part of a group of Java class libraries called the Java Foundation Classes (JFC). The

Abstract Windowing Toolkit (AWT) is the original GUI toolkit shipped with the Java Development Kit (JDK).

The AWT provides a basic set of graphical interface components similar to those available with HTML forms.

Swing is the latest GUI toolkit, and provides a richer set of interface components than the AWT. In addition,

Swing components offer the following advantages over AWT components:

 The behavior and appearance of Swing components is consistent across platforms, whereas AWT

components will differ from platform to platform

 Swing components can be given their own "look and feel"

 Swing uses a more efficient event model than AWT; therefore, Swing components can run more quickly

than their AWT counterparts

On the other hand, Swing components can take longer to load than AWT components.

ION Applications should use either all AWT-based components, or all Swing-based components. Mixing AWT

and Swing components in the same application can cause problems with the stacking order of your components.

The ION Swing components can be identified by a "J." For example, the Swing version of the IONPlot class is

called IONJPlot.

6 a) What is an adapter class? With example demonstrate their role in event handling?

 (or) Write a program to demonstrate key and mouse Adapter class

Ans.

Java Adapter Classes

Java adapter classes provide the default implementation of listener interfaces. If you inherit the adapter class, you

will not be forced to provide the implementation of all the methods of listener interfaces. So it saves code.

The adapter classes are found in java.awt.event, java.awt.dnd and javax.swing.event packages. The Adapter

classes with their corresponding listener interfaces are given below.

Adapter classes are a set of classes which can be used to simplify the event handling process. As we can see in the

mouse event handling program here, even though we want to handle only one or two mouse events, we have to

define all other remaining methods available in the listener interface(s).

To remove the aforementioned disadvantage, we can use adapter classes and define only the required event

handling method(s). Some of the adapter classes available in the java.awt.event package are listed below:

https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/package
http://www.startertutorials.com/corejava/using-delegation-event-model.html

17
3

1. import java.awt.*;

2. import java.awt.event.*;

3. public class AdapterExample{

4. Frame f;

5. AdapterExample(){

6. f=new Frame("Window Adapter");

7. f.addWindowListener(new WindowAdapter(){

8. public void windowClosing(WindowEvent e) {

9. f.dispose();

10. }

11. });

12.
13. f.setSize(400,400);

14. f.setLayout(null);

15. f.setVisible(true);

16. }

17. public static void main(String[] args) {

18. new AdapterExample();

19. }

20. }

7a) What is an applet? Explain the life cycle of Applet with a neat sketch.

An applet is a Java program that runs in a Web browser. An applet can be a fully functional Java application

because it has the entire Java API at its disposal.

There are some important differences between an applet and a standalone Java application, including the

following −

 An applet is a Java class that extends the java.applet.Applet class.

http://www.startertutorials.com/corejava/wp-content/uploads/2016/04/adapter-classes.png

17
4

 A main() method is not invoked on an applet, and an applet class will not define main().

 Applets are designed to be embedded within an HTML page.

 When a user views an HTML page that contains an applet, the code for the applet is downloaded to the

user's machine.

 A JVM is required to view an applet. The JVM can be either a plug-in of the Web browser or a separate

runtime environment.

 The JVM on the user's machine creates an instance of the applet class and invokes various methods during

the applet's lifetime.

 Applets have strict security rules that are enforced by the Web browser. The security of an applet is often

referred to as sandbox security, comparing the applet to a child playing in a sandbox with various rules

that must be followed.

 Other classes that the applet needs can be downloaded in a single Java Archive (JAR) file.

Life Cycle of an Applet

Four methods in the Applet class gives you the framework on which you build any serious applet −

 init − This method is intended for whatever initialization is needed for your applet. It is called after the

param tags inside the applet tag have been processed.

 start − This method is automatically called after the browser calls the init method. It is also called

whenever the user returns to the page containing the applet after having gone off to other pages.

 stop − This method is automatically called when the user moves off the page on which the applet sits. It

can, therefore, be called repeatedly in the same applet.

17
5

 destroy − This method is only called when the browser shuts down normally. Because applets are meant

to live on an HTML page, you should not normally leave resources behind after a user leaves the page

that contains the applet.

 paint − Invoked immediately after the start() method, and also any time the applet needs to repaint itself

in the browser. The paint() method is actually inherited from the java.awt.

 7.b) Write the applets to draw the Cube,Circle and Cylinder shapes

/*Cylinder*/

g.drawString("(a).Cylinder",10,110);

g.drawOval(10,10,50,10);

g.drawOval(10,80,50,10);

g.drawLine(10,15,10,85);

g.drawLine(60,15,60,85);

/*Cube*/

g.drawString("(b).Cube",95,110);

g.drawRect(80,10,50,50);

g.drawRect(95,25,50,50);

g.drawLine(80,10,95,25);

g.drawLine(130,10,145,25);

g.drawLine(80,60,95,75);

g.drawLine(130,60,145,75);

Applet program to draw Square

 import java. applet. Applet;

 import java. awt. Graphics;

 public class DrawRectanglesExample extends Applet{

 public void paint(Graphics g){

 g. drawRect(10,10,50,100);

 g. drawRect(100,100,50,50)

8. Discuss various AWT containers with examples.

Ans.

Containers are integral part of AWT GUI components. A container provides a space where a component can be

located. A Container in AWT is a component itself and it adds the capability to add component to itself.

Following are noticable points to be considered.

 Sub classes of Container are called as Containter. For example Panel, Frame and Window.

 Container can add only Component to itself.

 A default layout is present in each container which can be overridden using setLayout method.

Sr. No. Container & Description

17
6

1 Container

It is a generic container object which can contain other AWT components.

AWT UI Elements:

Following is the list of commonly used containers while designed GUI using AWT.

Sr.

No.

Container & Description

1
Panel

Panel is the simplest container. It provides space in which any other component can be

placed, including other panels.

2
Frame

A Frame is a top-level window with a title and a border

3
Window

A Window object is a top-level window with no borders and no menubar.

import java.awt.*;

import javax.swing.*;

public class ContainerTest extends JFrame { // top-level container

 JPanel panel; // low-level container

 JTextField field;

 JButton btn;

 public ContainerTest() {

 setTitle("Container Test");

 panel = new JPanel();

https://www.tutorialspoint.com/awt/awt_container.htm
https://www.tutorialspoint.com/awt/awt_panel.htm
https://www.tutorialspoint.com/awt/awt_frame.htm
https://www.tutorialspoint.com/awt/awt_window.htm

17
7

 field = new JTextField(20);

 panel.add(field);

 btn = new JButton("Submit");

 panel.add(btn);

 add(panel, BorderLayout.CENTER);

 setSize(350, 275);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setLocationRelativeTo(null);

 setVisible(true);

 }

 public static void main(String args[]) {

 new ContainerTest();

 }

}

9)Discuss about anonymous inner classes.

Anonymous Inner Classes

An anonymous inner class is one that is not assigned a name. This section illustrates how an

anonymous inner class can facilitate the writing of event handlers. Consider the applet shown

in the following listing. As before, its goal is to display the string “Mouse Pressed” in the

status bar of the applet viewer or browser when the mouse is pressed.

// Anonymous inner class demo.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="AnonymousInnerClassDemo" width=200 height=100>

</applet>

*/

public class AnonymousInnerClassDemo extends Applet {

public void init() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent me) {

showStatus("Mouse Pressed");

}

});

17
8

}

}

There is one top-level class in this program: AnonymousInnerClassDemo. The init()

method calls the addMouseListener() method. Its argument is an expression that defines

and instantiates an anonymous inner class. Let’s analyze this expression carefully.

The syntax new MouseAdapter() { ... } indicates to the compiler that the code between the

braces defines an anonymous inner class. Furthermore, that class extends MouseAdapter. This

new class is not named, but it is automatically instantiated when this expression is executed.

Because this anonymous inner class is defined within the scope of

AnonymousInnerClassDemo, it has access to all of the variables and methods within

the scope of that class. Therefore, it can call the showStatus() method directly.

As just illustrated, both named and anonymous inner classes solve some annoying

problems in a simple yet effective way. They also allow you to create more efficient code

PART- C

17
9

UNIT WISE UNIVERSITY PREVIOUS QUESTION PAPER QUESTIONS

UNIT –I PREVIOUS ASKED ESSAY QUESTIONS

1.What are the responsibilities of an agent? [5 m]

2.Define inheritance Explain the various forms of inheritance with suitable code segments. How to prevent a class from

inheritance? [10 M]

3.Write a program to demonstrate hierarchical and multiple inheritance using interfaces [10 M]

4 Write the significance and internal Architecture of Java Virtual Machine(JVM),. Briefly explain how Java is platform

independent[10 M]

5.What are the drawbacks of procedural languages? Explain the need of object oriented programming with suitable
program. [10 M]

6. Explain about various control statements[10 M]

7.Explain the significance of public, protected and private access specifies in Inheritance. [10 M]

(or) Describe different levels of access protection available in Java.

8.With suitable example demonstrate super, this ,final and[5 m] static keywords[10 M]

9.What is polymorphism? Explain different types of polymorphisms with examples. [10 M] (or)

 Compare and cons tract overloading and overriding with an example

10)What is a nested class? Differentiate between static nested classes and non-static nested classes. [10 M]

11)Discuss about anonymous inner classes. [5 m]

12) What is the purpose of constructor in Java programming? Explain the different types of constructors with an example.

13) Write a program to find the transpose of a given matrix. [10 M]

14) Explain the different parameter passing mechanisms used in Java with an example. [5 m]

UNIT –II PREVIOUS ASKED ESSAY QUESTIONS

18
0

1. How to define a package?Explain with suitable example how to create ,import and access a

package?

2. What is the need of Generics?[4 marks]

3. Write a program to implement the operations of random access file [5 m]

5. Explain the file management using File class.[5m]

6. Explain how multiple inheritance is achieved in java .

7. Create an interface with at least one method and implement that interface by within a method which returns a
reference to your interface.[5m]

8. Write a program to compute an average of the values in a file.[5m]

9. Explain multilevel inheritance with the help of abstract class in your program. .[5m]

10. Can inheritance be applied between interfaces? Justify your answer. .[5m]

11. Differentiate between interface and abstract class. .[5m]

12. Write a program to copy the contents of file1 to file 2. Read the names of files as command line arguments.[5m]

13. What support is provided by File class for file management? Illustrate with suitable scenarios. .[5m]

14. What is an interface? What are the similarities between interfaces and classes? .[5m]

15. How can you extend one interface by the other interface? Discuss. .[5m]

16. Discuss about CLASSPATH environment variables. [5m]

17. Discuss the different levels of access protection available in Java. [5m]

18. Demonstrate ordinal() method of enum. [5m]

19. What is type wrapper? What is the role of auto boxing? [5m]

20. Explain the process of defining and creating a package with suitable examples. [5m]

21. Give an example where interface can be used to support multiple inheritance. [5m]

22. Describe the process of importing and accessing a package with suitable examples.[5m]

23. How to design and implement an interface in Java? Give an example[5m]

24. Give an example where interface can be used to support multiple inheritance. [5m]

25. What are the methods available in the Character Streams? Discuss. [5m]

18
1

26. Distinguish between Byte Stream Classes and Character Stream Classes. [5m]

27. What is the accessibility of a public method or field inside a nonpublic class or interface? Explain. [5m]

UNIT –III PREVIOUS ASKED ESSAY QUESTIONS

1.a)With a suitable Java program explain user-defined exception handling.
b)What is meant by re-throwing exception? Discuss a suitable scenario for this. [5+5]

2.Does Java support thread priorities? Justify your answer with suitable discussion. b)**Describe producer-consumer

pattern using inter-thread communication. [5+5]

3.a)Write a program that demonstrate the priority setting in threads.

b)Write a program that includes a try block and a catch clause which processes the arithmetic exception generated by
division-by-zero error. [5+5]

4.a)Write a program that creates a thread that forces preemptive scheduling for lower- priority threads. b)Explain the
checked and unchecked exception With an example [5+5]

5 a) Write a program for user defined exception that check the internal and external marks are greater than 40 it raise the

exception “internal marks are exceed” and if external marks greater than 60 exception in raised the exception “external
marks Exceed”

6a) Explain about Synchronization method with an example. b)Explain about built in Exceptions

7. What is an exception? How are exceptions handled in Java programming? Explain with suitable program. [10]

8. Describe the need of thread synchronization. How is it achieved in Java programming? Explain with a suitable
program[10]

9a)Write a program to illustrate the use of multiple catch blocks for a try block. b)What are the uses of ‘throw’ and
‘throws’ clauses for exception handling? [5+5]

10.a) What is the difference between a thread and a process?
b)How to achieve synchronization among threads? Write suitable code. [5+5]

11.a)With a program illustrate user defined exception handling

b)How to handle multiple catch blocks for a nested try block? Explain with an example. [5+5]

12.a)Describe how to create a thread with an example.

b)Write a program to explain thread priorities usage. [5+5]

13a)What are advantages of using Exception handling mechanism in a program?

b)Write a java program that demonstrates how certain exception types are not allowed to be thrown. [5+5]

14a)What are the different ways that are possible to create multiple threaded programs in java? Discuss the differences

between them.

18
2

b)Write a program to create four threads using Runnable interface.

15Write a program to create three threads in your program and context switch among the threads using sleep functions.

 [10]

16a)Write a program with nested try statements for handling exception. b)How to create a user defined exception? [5+5]

17a)Differentiate between Checked and UnChecked Exceptions with examples. b)Write a program to create four threads

using Runnable interface. [5+5]

18a)What are the different ways to handle exceptions? Explain.

b)How many ways are possible in java to create multiple threaded programs? Discuss the differences between them. [5+5]

19a)What is an Exception? How is an Exception handled in JAVA?

b)Write a java program that illustrates the application of multiple catch statements. [5+5]

20a)Differentiate between multiprocessing and multithreading.What is to be done to implement these in a program?

b)Write a program that creates two threads. Fist thread prints the numbers

from 1 to 100 and the other thread prints the numbers from 100 to 1. [5+5]

UNIT –IV PREVIOUS ASKED ESSAY QUESTIONS

1 .a) Give an account of Random collection class

b) Discuss the methods of Stack class
c) What is the need of Generics? [3+3+4]

2.a) Explain the file management using File class.
b) Write a program which stores a list of strings in an Array List and then displays the contents of the list. [5+5]

3 .Write the name of bank depositor and their balance using Hash table.

4. a) Differentiate between ArrayList and Vector.

b) List the methods of Stack class. [5+5]

5 .a) What is a vector? How does it differ from array, list?

b) Write a program to count number of words in a given sentence. [5+5]

6 .a) What is Java Collections Framework? List out some benefits of Collections framework and

explain.
b) What is the importance of hashCode() and equals() methods? [5+5]

7 a) What are the common algorithms implemented in Collections Framework? Discuss.

b) What is difference between ArrayList and LinkedList in collection framework? Explain. [5+5]

8 a) Contrast sorted map and navigable map interfaces.

b) What is the purpose of BitSet class? What is the functionality of the following functions of BitSet class: cardinality() ,

flip() and intersects() [5+5]

9 a) Differentiate between ArrayList and a Vector? Why ArrayList is faster than Vector? Explain.

b) How an Hashtable can change the iterator? Explain. [5+5]

18
3

10 a) Explain the Bit Set and Calander classes in detail.

b) Discuss the differences between HashList and HashMap, Set and List. [5+5]

11 a) What are similarities and difference between ArrayList and Vector? Explain.

b) What is different between Iterator and ListIterator? Explain different ways to iterate over a list. [5+5]
12 .a) What are the best practices related to Java Collections Framework? Discuss.

b) What is Comparable and Comparator interface? Differentiate between them. [5+5]

UNIT-V JNTUH-PREVIOUSLY ASKED ESSAY QUESTIONS

1a) What is the significance of layout managers? Discuss briefly various layout managers.

 b) Give an overview of JButton class. [5+5]

2a) Explain delegation event model.

b) Write an Applet to draw a smiley picture accept user name as a parameter and display welcome
 message. [5+5]

3a) Describe about various components in AWT.

b) Write an applet program to handle all mouse events. [5+5]

4a) Write a Java program to create AWT radio buttons using check box group.

b) Explain the various event listener interfaces. [5+5]

5 a)Write a java program that design scientific calculator using AWT

 b)What are the different types of Event listeners supported by java

6 a) Is Applet more secure than application program? Justify your answer.

b) Design a user interface to collect data from the student for admission application using swing components.

 [5+5]

7. Write a program to demonstrate various keyboard events with suitable functionality. [10]

8.a) Why swing components are preferred over AWT components?

b) What is an adapter class? What is their role in event handling? [5+5]

9a) Explain the life cycle of an applet.
b) What are the various layout managers used in Java? [5+5]

10.a) What is the role of event listeners in event handling? List the Java event listeners
b) Write an applet to display the mouse cursor position in that applet window.[5+5]

11.a) Discuss various AWT containers with examples.
b) Explain about the adapter class with an example. [5+5]

12.a) What is an applet? Explain the life cycle of Applet with a neat sketch.

 b) Write the applets to draw the Cube and Cylinder shapes. [5+5]

13.a) What is an Layout manager? Explain different types of Layout managers.

 b) Write a program to create a frame window that responds to key strokes. [5+5]

18
4

14.a) Illustrate the use of Grid Bag layout.

 b) What are the subclasses of JButton class of swing package? [5+5]

15.a) Create a simple applet to display a smiley picture using Graphics class methods.

 b) Write a short note on delegation event model. [5+5]

16 a) List and explain different types of Layout managers with suitable examples.

b) How to move/drag a component placed in Swing Container? Explain. [5+5]

17.a) Discuss about different applet display methods in brief.

b) What are the various components of Swing? Explain. [5+5]

18 a) What is the difference between init() and start () methods in an Applet? When will each be

 executed?

 b) Write the applets to draw the Cube and Circle shapes. [5+5]

19. a) Explain various layout managers in JAVA.

 b) Write a program to create a frame window that responds to mouse clicks. [5+5]

	INSTITUTE VISION AND MISSION
	VISION
	MISSION
	DEPARTMENT VISION AND MISSION
	MISSION (1)

	PART –A
	UNIT WISE SHORT QUESTION AND ANSWERS
	UNIT-I
	1. **What is data abstraction? [2M]
	2. Explain the feature of Java [3M]
	 Multi-threaded:

	3. Explain the types of operators used in java [3M]
	The Arithmetic Operators
	The Relational Operators
	The Bitwise Operators
	The Logical Operators
	The Assignment Operators
	Miscellaneous Operators
	4. What is static inner class(or) difference static inner and non static inner classes [3M]
	5. List string manipulation functions of Java String class. [3M]
	7. Differentiate between class and object. [2M]
	8. **What is meant by ad-hoc polymorphism?(or)What is polymorphism [3M] Ans:
	Abstract class in Java
	Example abstract class

	Ans:
	Types of castings:
	1. Casting Incompatible Types or explicit type conversion or narrowing conversion
	2. Java’s Automatic Conversions or implicit type conversion or widening conversion

	Unicode System
	UNIT-II
	1. InputStream Class:
	2. OutputStream class:
	//let us save this program in D:/pack folder as A.java
	Compile as: D:/pack>javac –d . A.java
	Compile as: D:/pack>javac –d . A.java (1)
	Syntax:

	Stream Benefits :

	Advantages of Generics:
	1.Reader 2.Writer
	2. Writer Stream class:
	package MyPack
	Example:
	{
	…….
	class classpathdemo
	public static void main(String args[])
	Demo obj=new Demo();
	}
	Output:

	Output: 50 5
	UNIT-III
	 Resource Sharing
	 Responsiveness
	 Utilization of Multiprocessor Architecture
	 Economy
	Output :
	5. List the thread states. Ans:Life cycle of a Thread
	6. What keywords are essential in handling user-defined exception
	1. try
	3. throw
	5. finally
	Example demonstrating Keyword of Exception handling
	7. Differentiate between error and exception
	9. How does Java support inter thread communication? [2]
	1) wait() method
	2) notify() method
	public final void notify()
	public final void notifyAll()
	UNIT-IV
	2. List the hash table constructors.
	Syntax:
	3. Explain the methods defined by Vector.
	4. Explain the use of String tokenizer with an example***
	5. Write about any 3 methods defined by Iterator
	Example program:
	6. List the functions of Stack class.
	7. What is the use of Iterator class?
	8. What is the benefit of Generics in Collections Framework?
	9. Differentiate between Enumeration and Iterator interface.
	Differences between List ,Array and ArrayList Array
	List and ArrayList
	// A Java program to demonstrate differences between array and ArrayList
	11. What is the significance of Legacy class? Give example.
	12. What is a Java Priority queue?
	UNIT-V
	AWT Container Hierarchy:
	2. ***Compare Applets with application programs. [3M]
	A container has a setLayout() method to set its layout manager:
	4. explain about life cycle of Applet Java Applet
	5. What are the merits of swing components over AWT? [2]
	java.awt.event Adapter classes:
	javax.swing.event Adapter classes:
	Summary on limitations of AWT

	AWT Container Hierarchy: (1)
	Window:
	Panel:
	Frame:
	JMenuBar, JMenu and JMenuItem
	15. What are the differences between JToggle buttion and Radio buttion? [2]

	POP (Procedure Oriented Programming)
	Disadvantages
	Basic of Object-Oriented Concepts (OOP)
	Declaration
	public final int ordinal();
	ParametersNot Available
	Return Value
	ExceptionNot Available
	Example
	OutputData successfully written in the specified file
	Checked Exception Example

	3 constants defined in Thread class:
	Example of priority of a Thread:

	Java equals()
	Syntax:
	Parameter:
	Returns:

	Java hashcode()
	Syntax:
	Returns:
	Output:

	Types of LayoutManager
	Class Declaration
	Class Constructors
	Class Methods

	Java JCheckBox
	Java JRadioButton
	Ans.
	Delegation Event Model in Java
	Event Processing in Java
	components in AWT
	Container
	Window
	Panel
	Frame
	1. ImageIcon
	2. JButton
	3. JLabel
	4. JTextField
	5. JTextArea
	6. JPasswordField
	7. JCheckBox
	8. JRadioButton
	9. JList
	10. JComboBox

	Java Adapter Classes
	Life Cycle of an Applet
	AWT UI Elements:

