
UNIT III - VLSI CIRCUIT DESIGN PROCESSES                                                          

1. Explain VLSI Design flow. 

Answer: 

                       

                                       



                        

                       

                          



                       

                       

                        



2. Draw the monochrome stick diagram encodings for nMOS and CMOS process. 

Answer: 

                                                

                  

                                  

                 



                                             

                                                         

                                    

 

 

 

 

 

 

 

 

 

 



3. Draw the stick diagram for nMOS and CMOS inverter. 

Answer: 

                            

                         

4. Explain about design rules for layout. 

Answer: 

 

 

                     

                             

                       

                           

                             

                    



5. Draw the 2µm design rules for wires, transistors and contact cuts. 

Answer: 

 

 

                                       

                 

                    

                 

                

                

             

             



                    

                          

                                



6. Draw the layout diagram for two input nMOS NOR gate. 

Answer: 

                             

7. Explain about scaling of MOS circuits. 

Answer: 

 

 



 

8. What are the effects of scaling of MOS circuits? Explain in detail. 

Answer: 

 

 

 

 

 

                                              

                      

                   

                



                              

                                                           

                                            

                                    

                                            

 

 

          

 

 

 

                  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

           

 

           

     

 

 

 

 

 



 

                     



UNIT VI - ARRAY SUBSYSTEMS 
 

1. Explain the operation of 6 transistor SRAM cell. 

Answer: 

 
 



 
 

 



2. Explain the operation of DRAM cell. 

Answer: 

 
 

 



 
 

 



 
 

3. Explain about SRAM & DRAM. 

Answer: 

 



 
 



 
 

4. Write the differences between SRAM & DRAM. 

Answer; 

 
 



 
 



UNIT V PROGRAMMABLE LOGIC DEVICES 

1. Explain Programmable Logic Devices. 

Answer: 

Hardware realization of logic networks is very time-consuming and expensive. Once logic 

functions are realized in hardware, it is difficult to change them. In some cases, we need logic 

networks that are easily changeable. One such case is logic networks whose output functions 

need to be changed frequently, such as control logic in microprocessors, or logic networks whose 

outputs need to be flexible, such as additional functions in wrist watches and calculators. 

Another case is logic networks that need to be debugged before finalizing. Programmable logic 

devices (PLDs) serve this purpose. 

 

PLD is defined as a programmable logic device or PLD is an electronic component used to build 

reconfigurable digital circuits. Unlike logic gate, which has a fixed function, a PLD has an 

undefined function at the time of manufacture. Before the PLD can be used in a circuit it must be 

programmed (i.e., reconfigured). 

 

On these PLDs, all transistor circuits are laid out on IC chips prior to designers use. With PLDs, 

designers can realize logic networks on an IC chip, by only deriving concise logic expressions 

such as minimal sums or minimal products, and then making connections among pre-laid logic 

gates on the chip. So, designers can realize their own logic networks quickly and inexpensively 

using these pre-laid chips, because they need not design logic networks transistor circuits, and 

layout for each design problem. Thus, designers can skip substantial time of months for hardware 

design. 

 

CAD programs for deriving minimal sums or minimal products are well developed, so logic 

functions can be realized very easily and quickly as hardware, using these CAD programs. The 

ease in changing logic functions without changing hardware is just like programming in 

software, so the hardware in this case is regarded as “programmable.” Programmable logic 

arrays (i.e., PLAs) and FPGAs are typical programmable logic devices. 

 

2. Explain Programmable Logic Arrays (PLA). 

Answer: 

Programmable Logic Array (PLA) is an IC chip used for two-level combinational logic circuits. 

A PLA consists of an AND array and an OR array. Both the AND array and OR array are 

programmable. The architecture of PLA’s is shown in figure below. 

 

                         



In order to store logic expressions, connections between the MOSFET gates and vertical lines in 

the AND array and also connections between the MOSFET gates and horizontal lines in the OR 

array are set up by semiconductor manufacturers during fabrication according to customer 

specifications. This is known as programming PLD programmable logic devices. Since for these 

connections only one mask is required to program the transistors, PLAs are inexpensive when 

production volume is high enough to make the custom preparation cost of the connection mask 

negligibly small. Because of low cost and design flexibility, PLAs are extensively used in VLSI 

chips, such as microprocessor chips for general computation and microcontroller chips for home 

appliances, toys, and watches. In the PLA approach instead of generating all the minterms a 

separate logic is implemented which generates only the required product terms. This saves lot of 

silicon area. Also common product terms are identified and only one product term is generated 

for that particular term. 

 

3. Explain advantages, disadvantages and applications of PLA’s. 

Answer: 

PLA’s have the following advantages over random-logic gate networks, where random-logic 

gate networks are those that are compactly laid out on an IC chip: 

 

1. There is no need for the time-consuming logic design of random-logic gate networks and even 

more time-consuming layout. 

2. Design checking is easy, and design change is also easy. 

3. Layout is far simpler than that for random-logic gate networks, and thus is far less time 

consuming. 

4. When new IC fabrication technology is introduced, we can use previous design information 

with ease but without change, making adoption of the new technology quick and easy. 

5. Only the connection mask needs to be custom made. 

PLA is a very inexpensive approach, greatly shortening design time. PLA’s have the following 

disadvantages compared with random-logic gate networks. Random logic gate networks have 

higher speed than PLA’s or ROM’s. 

 

1. Random-logic gate networks occupy smaller chip areas than PLA’s or ROM’s, although the 

logic design and the layout of random-logic gate networks are far more tedious and time-

consuming. 

2. With large production volumes, random-logic gate networks are cheaper than PLA’s or 

ROM’s. 

 

Applications of PLA’s: 

A microprocessor chip uses many PLA’s because of easy of design change and check. PLA’s are 

used in its control logic, which is complex and requires many changes even during its design.  

PLA’s are used for code conversions, micro programs, address conversions, decision tables, bus 

priority resolvers, and memory overlay. 

 

When a new product is to be manufactured in small volume or test marketed, PLA is used.  

When new product is well received in the market and does not need further changes PLA’s can 

be replaced by random-logic gate networks for low cost for high volume production and high 

speed. Full custom design approach is very time consuming, taking months or years, but if 

PLA’s are used in the control logic, a number of different custom design chips with high 

performance can be made quickly by changing only one connection mask for the PLAs, although 

these chips cannot have drastically different performance and functions. 



4. Implement the following Boolean functions using PLA. 

                                    

Answer: 

               

5. Implement Full Adder using PLA.  

Answer: 

 

 



6. Explain Programmable Array Logic (PAL). 

Answer: 

A programmable array logic (PAL) is a special type of a PLA where the OR array is not 

programmable. In other words, in a PAL, AND array is programmable but the OR array is fixed; 

whereas in a PLA, both arrays are programmable. The architecture of PAL is shown in figure 

below. 

 

  
 

Unlike PLA, the product terms cannot be shared between the OR gates. Each function must be 

simplified individually to reduce the product terms to maximum two. If the SOP expression 

contains more than two product terms, each OR gate can be used to implement the function 

partially, and then summed using the additional OR gate to implement the complete function. 

 

The advantage of PAL’s is the elimination of fuses in the OR array and special electronic circuits 

to blow these fuses. Since these special electronic circuits and programmable OR array occupy a 

very large area, the area is substantially reduced in PAL. Since single-output, two-level networks 

are needed most often in design practice, many two-level networks which are mutually 

unconnected are placed in some PAL packages. 

 

7. Implement the following Boolean functions using PAL. 

                                    

Answer: 



 

8. Explain design approaches in VLSI. 

Answer: 

Following are the design approaches in VLSI, 

1) Full Custom 

2) Semi Custom 

a) Cell Based 

i. Standard Cells 

ii. Macro Cells 

b) Array Based 

i. Pre-diffused Gate Arrays 

ii. Pre-wired FPGA’s 

Full Custom: 

In the custom design approach, each individual transistor is designed and laid out manually. The 

main advantage of this method is that the circuit is highly optimized for speed, area, or power. 

This design style is only suitable for very high performance circuitries, however, due to amount 

of manual work involved. 

 

Semi Custom: 

In this approach, the majority of the chip is designed using a group of predefined cells called as 

standard cells and rest are designed manually. The cells are predesigned, pretested and 

precompiled. It is up to the designer to import them into the design. 

 

Standard Cells: 

Predesigned logic cells like gates, multipliers, flip flops etc. known as standard cells are used in 

standard cell based design. The designer defines only the placement of the standard cells and 

interconnections. Standard cells can be placed anywhere on the silicon. The designer can save 

time and reduces the risk by making use of predesigned standard library. A standard cell requires 

less area for a given function as macros are very compact. 



              

Gate Arrays: 

A gate array is an IC chip on which gates are placed in matrix form without connection among 

the gates. By connecting gates, we can realize logic works. Connections among gates run in 

narrow strips of space between columns or rows of gates. These strips of space are called routing 

channels. 

 

           
Gate arrays are of three types. 

1) Channeled Gate Arrays 

2) Channel Less Gate Arrays 

3) Structured Gate Arrays 

 

Channeled Gate Arrays: 

It contains multiple rows of basic cells with interconnect spaces between the rows. The space 

between the rows of cells is fixed.  

     



Channel Less Gate Arrays (or) Sea of Gates: 

Here there is no predefined area set aside for routing between the rows of cells. It occupies the 

entire core of the chip. All interconnections are passed over cells. The number of array elements 

is increased.  

           
Structured Gate Arrays: 

It contains custom blocks for embedded gate array functions containing different memory types 

and size as well as variety of embedded functions. It gives improved area efficiency. 

 
 

9. Explain the architecture of CPLD’s. 

Answer: 

Complex Programmable Logic Devices (CPLD’s) has large number of PAL’s on a single chip, 

connected to each other through a cross point switch and can handle much more complex logic. 

CPLD is a programmable logic device with complexity between that of PAL’s and FPGA’s, and 

architectural features of both. The building block of a CPLD is the logical block, which contains 

logic block which contains logic implementing intended logic operations. It has non-volatile 

configuration memory and can function immediately on system start-up. CPLDs typically have 

the equivalent of thousands to tens of thousands of logic gates. The devices are programmed 

using programmable elements like EPROM cells, EEPROM cells, or Flash EPROM cells. The 

architecture of CPLD shown in figure below has, 

1) PAL Blocks (Functional Blocks) 

2) Interconnect matrix 

3) Input/ Output (I/O) Blocks 

 



 
 

Functional Block: 

A typical functional and I/O  block is shown in figure below. The AND plane can accept inputs 

from the I/O blocks, other function blocks, or feedback from the same function block. The terms 

are then ORed together using a fixed number of OR gates, and terms are selected via a large 

multiplexer. The outputs of the multiplexer can then be sent straight out of the block, or through 

a clocked flip-flop. This particular block includes additional logic such as a selectable exclusive 

OR and a master reset signal, in addition to being able to program the polarity at different stages.  

 

 
 

Input/ Output (I/O) Block: 

The I/O block is used to drive signals to the pins of the CPLD device at the appropriate voltage 

levels with the appropriate current. Usually, a flip-flop is included. This is done on outputs so 

that clocked signals can be output directly to the pins without encountering significant delay. It is 

done for inputs so that there is not much delay on a signal before reaching a flip-flop which 

would increase the device hold time requirement. Also, some small amount of logic is included 

in the VO block simply to add some more resources to the device. 

 

 



Interconnect Wires: 

The CPLD interconnect is a very large programmable switch matrix that allows signals from all 

parts of the device go to all other parts of the device. While no switch can connect all internal 

function blocks to all other function blocks, there is enough flexibility to allow many 

combinations of connections. 

 

10. Explain advantages and applications of CPLD’s. 

Answer: 

Advantages of CPLD’s: 

1) Ease of design 

2) Faster time to market 

3) Low development tools 

4) Longer time in market through field upgrade ability 

5) Increased product revenue 

6) Reduced PCB area 

7) Decreased component inventory 

8) Lower cost 

Applications of CPLD’s: 

1) Used in implementing random glue logic to prototyping small gate arrays. 

2) Realize complex designs such as graphics controller, LAN controllers, UARTS, cache 

control etc. 

3) Used for conversions of designs which consist of multiple SPLD’s into a smaller number 

of CPLD’s. 

4) Easy to make design changes through reprogramming and reconfigure hardware without 

power down. 

 

11. Explain FPGA architecture. 

Answer: 

A field-programmable gate array (FPGA) is a semiconductor device that can be configured by 

the customer or designer after manufacturing, hence the name field-programmable. FPGAs are 

programmed using a logic circuit diagram or a source code in a hardware description language 

(HDL) to specify how the chip will work. FPGA can be used to implement any logical function 

that an application-specific integrated circuit (ASIC) could perform. Unlike an Application 

Specific Integrated Circuit (ASIC) which can perform a single specific function for the lifetime 

of the chip and it can be reprogrammed to perform a different function in a matter of 

microseconds. 

 

The architecture of FPGA shown in figure below contains, 

1) Rectangular array of configurable logic blocks (CLBs) capable of implementing a variety 

of logic functions. 



2) Programmable interconnection resources or wringing tracks in simple wires to route the 

signals between the CLBs. 

3) Switches to connect the horizontal and vertical wiring tracks. 

4) Configurable I/O blocks for signal conditioning at the chip input and output pins. 

 

 

 

Configurable Logic Blocks (CLB): 

In the configurable logic block, look up table is used to implement any number of different 

functionality. The input lines go into the input and enable the lookup table. The output of the 

lookup table gives the result of the logic function that it implements. Lookup table is 

implemented using SRAM cells and multiplexers. A lookup table with K inputs corresponds to 

2K X l-bit SRAM, and the user can realize any k-input logic function by programming logic 

function’s truth table directly into the memory. Number of different possible functions for k 

input LUT is 2K. Advantage of such architecture is that it supports implementation of so many 

logic functions; however, the disadvantage is unusually large number of memory cells required 

to implement such a logic block in case number of inputs is large. Figure below shows the block 

diagram of typical CLB. 

 
 

 



It contains two four input lookup tables fed by CLB inputs, and a third lookup table fed by the 

other two. This arrangement allows the CLB to implement a wide range of logic functions of up 

to nine inputs, two separate four input functions, or other possibilities. Each CLB also contains 

two flip-flops. Each CLB contains circuitry that allows it to efficiently perform arithmetic. 

Hence lookup table is a small black box to implement its intended function taking many inputs 

giving a single output. Also, users can configure the lookup tables as read/write RAM cells. 

 

Routing Techniques: 

Routing architecture comprises of programmable switches and wires. Routing provides 

connection between I/O blocks and logic blocks, and between one CLB and another CLB. The 

type of routing architecture decides area consumed by routing and density of logic blocks. 

Routing technique used in an FPGA largely decides the amount of area used by wire segments 

and programmable switches as compared to area consumed by logic blocks. Connection between 

different CLBs is done through switch matrix. This is similar to the switching box in the 

telecommunications. A wire segment can be described as two end points of an interconnect with 

no programmable switch between them. A sequence of one or more wire segments in an FPGA 

can be termed as a track. 

 

There are four types of wire segments available: 

1. General purpose segments, the ones that pass through switches in the switch block. 

2. Direct interconnect: ones which connect logic block pins to four surrounding    

connecting blocks. 

3. Long line: high fan out uniform delay connections. 

4. Clock lines: clock signal provider which runs all over the chip. 

 

Configurable I/O Blocks: 

A configurable I/O block, shown in figure below is used to bring signals onto the chip and send 

them back off again. It consists of an input buffer and an output buffer with three state and open 

collector output controls. Typically, there are pull up resistors on the outputs and sometimes pull 

down resistors. The polarity of the output can usually be programmed for active high or active 

low output and often the slew rate of the output can be programmed for fast or slow rise and fall 

times. In addition, there is often a flip-flop on outputs so that clocked signals can be output 

directly to the pins without encountering significant delay. It is done for inputs so that there is 

not much delay on a signal before reaching a flip-flop which would increase the device hold time 

requirement. 

 



12. Explain different types of FPGA architectures. 

Answer: 

Symmetrical Array FPGA: 

In this type, the structure is similar to a gate array with routing channels where each logic cell in 

a gate array is replaced with a logic block. It consists of a many square cluster of logic blocks 

surrounded by input output (I/O) blocks as shown in figure below. Each one of the CLB is able 

to handle a function with four Boolean variables. The interconnection resources or wiring tracks 

would run along the entire cluster, connecting thee logic blocks. Part of the programmable nature 

of the design allows users to turn on or turn off transistor based switches to connect or 

disconnect specific logic cells. This essentially allows the user to control which of the cells is 

used in creating output from the cluster in particular applications. Since the configuration of the 

switches is stored in Static-RAM (which is volatile), a battery backup must be used. 

 

 
 

Sea of Gates: 

In his design the type of interconnections between components uses overlays of the entire logic 

block. This allows for a much greater speed and usage of up to 40,000 logic gates, which is 

many, more than the maximum of 1800 used in Xilinx’s early chips.  

 

 
 

Row Based Arrays: 

Row-based architecture consists of alternating rows of logic blocks and programmable 

interconnect tracks. Input output blocks is located in the periphery of the rows. One row may be 

connected to adjacent rows via vertical interconnect. Logic modules can be implemented in 

various combinations. Combinatorial modules contain only combinational elements where as 

Sequential modules contain both combinational elements along with flip-flops. These sequential 

modules can implement complex combinatorial-sequential functions. Routing tracks are divided 

into smaller segments connected by anti-fuse elements between them. 



 
 

Hierarchical PLD’s: 

In this design less than twenty logic blocks are used, which is less than the hundreds used by 

Xilinx and thousands used by Actel. Despite the relatively small number of logic blocks, this 

design uses a comparable number of logic gates (up to 20,000). It achieves this task by creating 

an array of logic gates within the blocks. No external memory units are required to store 

information, unlike the usage of SRAM for anti-fuse technology. This allows the chips to be 

truly reprogrammed; however, the speed of reprogramming is nowhere near as fast as with 

SRAM technology. 

 

 
 

13. Explain different FPGA or CPLD programming technologies. 

Answer: 

Antifuse: 

The antifuse FPGAs are programmed by applying high voltage between the two terminals of the 

fuse to break down the dielectric material of the fuse. The antifuse switch used in FPGA is 

shown in figure below. Antifuse structure is normally used in an open circuit condition. 

However, when they are programmed, a low resistance path is established. The top and bottom 

layers are conducting, and the middle layer is an insulator. In normal conditions, the insulating 

layer isolates the top and bottom layers. But when the antifuse is programmed, a low resistance 

path is established through the insulator. The antifuse switches have smaller on-resistance and 

parasitic capacitance than pass transistors and transmission gates. Hence, it supports higher 

switching speed. Antifuse switches are one-time programmable, so design changes are not 

possible. 

 



EPROM: 

The EPROM and EEPROM technology are programmed using high voltages. The devices are 

reprogrammable and nonvolatile, and can be programmed while the devices are embedded in the 

system. The EPROM and EEPROM programming is based on the flash memory cell as shown in 

figure below which uses two gates, one is the control gate and another is the floating gate. Under 

normal mode of operation, there are no changes on the floating gate, and the transistor behaves 

like a normal transistor with low threshold voltage. When a high voltage is applied to the control 

gate, the floating gate is charged, and the threshold voltage is increased. The transistor becomes 

permanently OFF. 

 

 
 

SRAM: 

In the SRAM, the logic functions are based on the stored bits in the SRAM. These devices use 

CMOS transmission gates for switching. SRAM cells are used to control the state of pass 

transistors which can establish connections between horizontal and vertical wires. An SRAM 

memory cell consists of six transistors as shown in figure below. 

 

 
 

 
 

 



14. Explain advantages and applications of FPGA’s. 

Answer: 

Advantages of FPGA’s: 

1) Very fast custom logic 

2) Massively parallel operation 

3) Much faster than DSP engines 

4) Faster than microcontrollers and microprocessors 

5) More flexible than dedicated chipsets 

6) More affordable and less risky than ASIC 

7) Allows unlimited product differentiation 

8) Reprogrammable at any time 

Applications of FPGA’s: 

1) Applications of FPGAs include digital signal processing, software-defined radio, 

aerospace and defense systems, ASIC prototyping, medical imaging, computer vision, 

speech recognition, cryptography, bioinformatics, computer hardware emulation and a 

growing range of other areas. 

2) FPGAs originally began as competitors to CPLDS. As their size, capabilities, and speed 

increased, they began to take over larger and larger functions to the state where some are 

now marketed as full systems on chips (SoC). Particularly with the introduction of 

dedicated multipliers into FPGA architectures in the late 1990s, applications which had 

traditionally been the sole reserve of DSPs, began to incorporate FPGAs instead. 

3) FPGAs especially find applications in any area or algorithm that can make use of the 

massive parallelism offered by their architecture. One such area is code breaking of 

cryptographic algorithms. 

4) FPGAs are increasingly used in conventional high performance computing applications 

where computational kernels such as FFT or convolution are performed on the FPGA 

instead of a microprocessor. 

5) The inherent parallelism of the logic resources on an FPGA allows for considerable 

compute throughput even at a low MHz clock rates. The flexibility of the FPGA allows 

for even higher performance by trading off precision and range in the number format for 

an increased number of parallel arithmetic units. This has driven a new type of processing 

called reconfigurable computing, where time intensive tasks are offloaded from software 

to FPGAs. 

6) The adoption of FPGAs in high performance computing is currently limited by the 

complexity of FPGA design compared to conventional software and the extremely long 

turnaround times of current design tools, where 4-8 hours wait is necessary after even 

minor changes to the source code. 

7) Traditionally, FPGAs have been reserved for specific vertical applications where the 

volume of production is small. For these low-volume applications, the premium that 

companies pay in hardware costs per unit for a programmable chip is more affordable 

than the development resources spent on creating an ASIC for a low-volume application. 

Today, new cost and performance dynamics have broadened the range of vide 

applications. 

 

 

 



15. Compare PLA and PAL. 

Answer: 

S.No. PLA PAL 

1 Combinational logic circuits uses AND 

and OR planes 

Combinational logic circuits uses AND and 

OR planes 

2 AND and OR planes are programmable Only AND plane programmable 

3 Costlier than PAL Cheaper than PLA 

4 Extremely flexible  Moderately flexible 

5 More no. of functions can be 

implemented 

Less no. of functions can be implemented 

6 More area Less area 

7 More delay Less delay 

 

16. Compare FPGA and CPLD. 

Answer: 

S.No. CPLD FPGA 

1 Uses PAL like blocks Uses Look Up Tables 

2 Gate density up to 10,000 gates Gate density up to 10,00,000 gates 

3 Performance independent of routing Performance depends on routing 

4 Configuration context stored in ROM Configuration context stored in RAM 

5 Configuration context is Non-Volatile Configuration context is Volatile 

6 Suitable for low to medium density 

designs 

Suitable for medium to high density 

designs 

7 Simple structure Complex structure 

8 Crossbar interconnection fabric Channel based interconnection 

9 Can be reprogrammed limited no. of times Can be reprogrammed many times 

10 Coarse grained structure  Fine grained structure 

 

17.  Explain the parameters influencing Low Power Design. 

Answer: 

1. Power Supply Reduction 

One of the main motivations in technology development has been to increase the levels of 

integration by reducing feature sizes. However, as gate lengths are reduced (without reducing 

voltage levels) the electric field strength increases in the gate region. This leads to reliability 

problems as the high electric field strengths accelerate the conducting electrons to such speeds 

that they cause substrate current (by dislodging holes on impact in the drain area) and actually 

penetrate the gate oxide. So to avoid high electric fields across transistors reduce supply voltage. 

Developments in fabrication are already moving from the existing standard of 5 V towards a new 

level of 1.8 V and experimental processes are looking at even lower voltages. 

 

 

 

 



2. Variation of  Threshold Voltage 

The speed of a circuit is a function of (Vgs – VT) where Vgs is the gate-source voltage and VT is 

threshold voltage. Thus, it is also desirable to reduce the magnitude of the threshold voltages 

either to minimize the reduction in speed or to allow further reduction in VDD. 

 

3. Compensating for Lower Speed 

If the target supply voltage is lowered, then the circuit speed will be reduced and the critical-path 

delay will be increased. To compensate for this, a designer would then have to insert or 

redistribute latches so that the desired frequency is again attained. 

 

4. Voltage Swing 

Reduced voltage swing reduces total power consumption. For example an internal bus 

architecture which is designed for operation at about 2 V with an internally generated supply for 

the bus itself. Modified thresholds, and special driving and sensing circuitry, allow the bus to 

swing less that 1 V. This not only saves power in itself but also increases the bus speed making 

operation at 2 V more attractive. 

 

5. Reduce C  

The second strategy is to reduce capacitance. This comes naturally with smaller feature sizes and 

so a circuit designer will generally wish to use the minimum geometries possible in the given 

technology. 

 

6. Partition Blocks 

It is best to partition large blocks into smaller ones, the product of activity and capacitance is 

reduced. 

7. Locality of Reference 

This is a design philosophy m which signals are generated and used locally in terms of their 

physical location on the silicon surface since the further a signal has to travel; the higher is the 

capacitance of that connection. With signals being processed locally, there is greater opportunity 

for parallel execution. With parallel execution, there is greater throughput that could be traded 

off for a lower supply voltage and so lower power consumption. 

 

8. Clocks and Control 

In architectures with distributed processing, the question arises as to whether there should be 

global control and clock signals. On the one hand, there needs to be synchronization between 

communicating pairs of processors; on the other hand, the global distribution network has a very 

large capacitance and is switched frequently. By using True Single Phase Clocking (TSPC), a 

design can greatly reduce the capacitance of its largest network. TSPC has already been used to 

implement extremely fast and power-hungry designs. The speed advantage could be traded off 

against power by designing for lower supply voltages. 

 

 

 

 



9. Logic Design 

Use logic families which feature low capacitance. One promising family is the Complementary 

Pass Transistor Logic (CPL). This uses networks of purely n-type pass-transistors to form logic 

functions (without any p-types). All signals are generated in complementary values and the 

outputs from the logic functions drive CMOS inverters. 

 

10. Buffer Design 

One recurrent problem is the design of circuitry to drive a relatively large capacitance 

(particularly external loads). The basic solution is a sequence of buffers with increasing gate 

widths; the design issue is what should be the size ratio (f) of each successive buffer. With speed 

as the main consideration, the classical value is f=e. 

 

11. Reduced A 

Reduce A: the average activity on each gate. Power is only expended when a node is switched; if 

switching is restricted to when information changes then power is minimized. This can be 

summarized by the phrase transition avoidance. As a first observation, this argues against the use 

of circuit styles which involve precharging and discharging as part of logic evaluation. 

 

12. Glitch Avoidance 

With some digital logic, there are spurious transitions (known as glitches) which occur due to 

partially resolved functions to a 1 as the logic is resolving before returning to a final value of 0. 

This wastes power. The problem is reduced in general by designing circuits so that there are 

equal delay paths between all of the gate inputs and the system inputs, thus equalizing arrival 

times of changing signals. 

 

13. Point-to-Point Buses 

Suppose there are two independent slowly-varying digital signals within a component. If these 

are distributed on independent data buses, then transitions only occur when information changes. 

If instead, the two signals are combined by a multiplexer onto a single bus for distribution, there 

is also likely to be a transition when the multiplexer is switched (i.e. when the control signal 

changes). Although point-to-point buses incur an area cost due to the extra interconnect routing, 

they save significant power by avoiding transitions which occur when mixing independent 

signals. 

 

14. Reviewing the Algorithm 

The power consumption of a complex system can be greatly influenced at the algorithmic level. 

Normally, component power consumption corresponds to the usual algorithmic performance 

criterion of speed since algorithmic speed is a function of the number of operations and this 

translates onto the component as the amount of switching. Thus, the programmer’s desire to 

reduce the number of steps in a computation will naturally reduce the power consumption of its 

implementation. 

 

15. Reduce short circuit current 

A designer needs to consider short circuit current in two ways: first, how to minimize what is 

unavoidable, second how to avoid what is unnecessary. 



16. Resistive Networks 

Some logic styles deliberately use resistive networks formed from transistors to establish the 

value of the output signal (e.g., pseudo-nMOS). These styles cannot be used for low power 

design. Secondly, some strategies for avoiding power loss involve generating multiple voltage 

levels using resistive networks either on-chip or at the system level. This static power loss must 

be carefully included in the evaluation of such strategies. 

 

17. Switching Current 

As the input to a CMOS inverter changes, there is a period during which both transistors are 

switched ON that is when the input voltage is between (VDD  - Vtp) and Vtn. During this period, 

there is short circuit current and so power dissipation. This is clearly dependent upon the rise 

time of the input signal. For poorly designed circuits, this power loss can be about 20% of the 

total power dissipation. A simple rule-of-thumb for designers is to size the transistors so that the 

delay in the output signal is the same as that of the input; with this strategy, the short-circuit 

power loss is reduced to 1- 2% of the dynamic power dissipation. 

 

18. Glitch Propagation 

The output glitch propagates on to other stages. In practice, this signal often takes the form of a 

slowly varying voltage which covers the centre of its range causing short circuit currents in the 

next gate. This is another source of power dissipation and a further reason to avoid logic glitches. 

 

18. Explain about Standard Cells. 

Answer: 

Standard cells are pre-defined logic elements used in the circuit. The design methodology that 

uses standard cells is known as cell based design methodology. Hence, Standard cells are the 

basic building blocks of cell-based IC design methodology. A standard-cell library is one of the 

foundations upon which the VLSI design approach is built. A standard cell is designed either to 

store information or perform a specific logic function (such as inverting, a logic AND, or a logic 

OR). The type of standard cell created to store data is referred to as a sequential cell. Flip-flops 

(FF) and latches are examples of sequential cells, which are indispensable elements of any ASIC 

library. The type of standard cell used to perform logic operations on the signals presented on its 

inputs is called combinational cell. Standard cells are built on transistors. They are one 

abstraction level higher than transistors. 

 

An ASIC library or standard cell library is a group of standard cells glued together as a package. 

Typically, an ASIC library contains a sufficient number of combinational cells to perform any 

logic operation required by commonly used design styles with decent efficiency. It should also 

have many types of sequential cells to meet any storage requirements. A typical modem ASIC 

library, could have more than several hundred different standard cells. Those cells are 

categorized into groups by their functionality, such as INV, BUF, NAND, NOR, AND, OR, 

XOR, Boolean functions, flip-flop, and scan flip-flop. 

               

      



UNIT V CMOS TESTING 

1. Explain Need for Testing. 

Answer: 

The reduction in feature size increases the probability that a manufacturing defect in the IC will 

result in a faulty chip. A very small defect can easily result in a faulty transistor or 

interconnecting wires when the feature size is less than 100 nm. Furthermore, it takes only one 

faulty transistor or wire to make the entire chip fail to function properly or at the required 

operating frequency. Yet, defects created during the manufacturing process are unavoidable, and, 

as a result, some number of ICs is expected to be faulty; therefore, testing is required to 

guarantee fault free products, regardless of whether the product is a VLSI device or an electronic 

system composed of many VLSI devices. It is also necessary to test components at various stages 

during the manufacturing process. For example, in order to produce an electronic system, we 

must produce ICs, use these ICs to assemble printed circuit boards (PCBs), and then use the 

PCBs to assemble the system. There is general agreement with the rule of ten, which says that 

the cost of detecting a faulty IC increases by an order of magnitude as we move through each 

stage of manufacturing, from device level to board level to system level and finally to system 

operation in the field. Electronic testing includes IC testing, PCB testing, and system testing at 

the various manufacturing stages and, in some cases, during system operation. Testing is used 

not only to find the fault-free devices, PCBs, and systems but also to improve production yield at 

the various stages of manufacturing by analyzing the cause o f defects when faults are 

encountered. In some systems, periodic testing is performed to ensure fault-free system operation 

and to initiate repair procedures when faults are detected. Hence, VLSI testing is important to 

designers, product engineers, test engineers, managers, manufacturers, and end-users. 

 

2. Explain testing at various stages. 

Answer: 

A testable circuit is defined as a circuit whose internal nodes of interest can be set to 0 or 1 and 

in which any change to the desired logic value at the node of interest, due to a fault, can be 

observed externally. VLSI development process is shown in figure below, where it can be seen 

that some form of testing is involved at each stage of the process. Based on a customer or project 

need, a ASIC device requirement is determined and formulated as a design specification. 

Designers are then responsible for synthesizing a circuit that satisfies the design specification 

and for verifying the design. Design verification is a predictive analysis that ensures that the 

synthesized design will perform the required functions when manufactured. When a design error 

is found, modifications to the design are necessary and design verification must be repeated. As a 

result, design verification can be considered as a form of testing. Once verified, the VLSI design 

then goes to fabrication. At the same time, test engineers develop a test procedure based on the 

design specification and fault models associated with the implementation technology. A defect is 

a flaw or physical imperfection that may lead to a fault. Due to unavoidable statistical flaws in 

the materials and masks used to fabricate ICs, it is impossible for 100% of any particular kind of 

IC to be defect-free. Thus, the first testing performed during the manufacturing process is to test 

the ICs fabricated on the wafer in order to determine which devices are defective. The chips that 

pass the wafer-level test are extracted and packaged. The packaged devices are retested to 

eliminate those devices that may have been damaged during the packaging process or put into 

defective packages. Additional testing is used to assure the final quality before going to market. 

This final testing includes measurement of such parameters as input output timing specifications, 

voltage and current. In addition, burn-in or stress testing is often performed where chips are 



subjected to high temperatures and supply voltage. The purpose of bum-in testing is to accelerate 

the effect of defects that could lead to, failures in the early stages of operation of the IC. 

 

 

 

3. Explain challenges in VLSI testing. 

Answer: 

The physical implementation of a VLSI device is very complicated. Any small piece of dust or 

abnormality of geometrical shape can result in a defect. Defects are caused by process variations 

or random localized manufacturing imperfections. Process variations affecting transistor channel 

length, transistor threshold voltage, metal interconnect width and thickness, and inter metal layer 

dielectric thickness will impact logical and timing performance. Random localized imperfections 

can result in resistive bridging between metal lines, resistive opens in metal lines, improper via 

formation, etc. Recent advances in physics, chemistry, and materials science have allowed 

production of nanometre scale structures using sophisticated fabrication techniques. It is widely 

recognized that nanometre-scale devices will have much higher manufacturing defect rates 

compared to conventional complementary metal oxide semiconductor (CMOS) devices. They 

will have much lower current drive capabilities and will be much more sensitive to noise-induced 

errors such as crosstalk. They will be more susceptible to failures of transistors and wires due to 

soft (cosmic) errors, process variations, electromigration, and material aging. As the integration 

scale increases, more transistors can be fabricated on a single chip, thus reducing the cost per 

transistor; however, the difficulty of testing each transistor increases due to the increased 

complexity of the VLSI device and increased potential for defects, as well as the difficulty of 

detecting the faults produced by those defects. 

 

4. Explain Test Principles. 

Answer: 

A fault is a representation of a defect reflecting a physical condition that causes a circuit to fail to 

perform in a required manner. A failure is a deviation in the performance of a circuit or system 

from its specified behavior and represents an reversible state of a component such that it must be 



repaired in order for it to provide its intended design function. A circuit error is a wrong output 

signal produced by a defective circuit. A circuit defect may lead to a fault, a fault can cause a 

circuit error, and a circuit error can result in a system failure. 

 

Exhaustive Testing: 

To test a circuit with n inputs and m outputs, a set of input patterns is applied to the circuit under 

test (CUT), and its responses are compared to the known good responses of a fault-free circuit. 

Each input pattern is called a test vector. In order to completely test a circuit, many test patterns 

are required; however, it is difficult to know how many test vectors are needed to guarantee a 

satisfactory reject rate. If the CUT is an n-input combinational logic circuit, we can apply all 2n 

possible input patterns for testing stuck-at faults; this approach is called exhaustive testing. If a 

circuit passes exhaustive testing, we might assume that the circuit does not contain functional 

faults, regardless of its internal structure. Unfortunately, exhaustive testing is not practical when 

n is large. Furthermore, applying all 2n possible input patterns to an n-input sequential logic 

circuit will not guarantee that all possible states have been visited. However, this method of 

applying all possible input test patterns to an n-input combinational logic circuit also illustrates 

the basic idea of functional testing. 

 

Functional Testing: 

In this testing every entry in the truth table for the combinational logic circuit is tested to 

determine whether it produces the correct response. In practice, functional testing is considered 

by many designers and test engineers to be testing the CUT as thoroughly as possible in a 

system-like mode of operation. In either case, one problem is the lack of a quantitative measure 

of the defects that will be detected by the set of functional test vectors. 

 

Structural Testing: 

The approach of structural testing is to select specific test patterns based on circuit structural 

information and a set of fault models. Structural testing saves time and improves test efficiency, 

as the total number of test patterns is decreased because the test vectors target specific faults that 

would result from defects in the manufactured circuit. Structural testing cannot guarantee 

detection of all possible manufacturing defects, as the test vectors are generated based on 

specific fault models; however, the use of fault models does provide a quantitative measure of 

the fault-detection capability of a given set of test vectors for a targeted fault model. This 

measure is called fault coverage. 

 

Fault Simulation: 

Any input pattern or sequence of input patterns that produces a different output response in a 

faulty circuit from that of the fault-free circuit is a test vector, or sequence of test vectors, that 

will detect the faults. The goal of test generation is to find an efficient set of test vectors that 

detects all faults considered for that circuit. Because a given set of test vectors is usually capable 

of detecting many faults in a circuit, fault simulation is typically used to evaluate the fault 

coverage obtained by that set of test vectors. As a result, fault models are needed for fault 

simulation as well as for test generation. 

 

5. Explain Stuck At Fault Model. 

Answer: 

The most commonly used model in VLSI circuit testing is the stuck at fault (SAF) model. The 

SAF model assumes that any node (a net in a netlist) within a silicon chip has the potential risk 

of being permanently tied to power (stuck at one, SAl) or ground (stuck at zero, SAO) due to 



various manufacturing defects. Either SAl or SAO makes the affected node non-functional since 

that node cannot be switched by the circuit for logic operation any longer. Consequently, the 

chips that contain such nodes are regarded as bad chips and cannot be delivered to the customer. 

Design for test is the art of inserting some extra testing circuitry inside the chip to search for such 

SAF nodes. 

 

Figure below shows an example of an SAO fault model. In this circuit, there are seven nodes (or 

nets); A, B, C, D, E, F, and G. An SAO fault is presented at physical location y, which belongs to 

node G. In other words, node G is always at ground electric potential and cannot be switched by 

its driver Cell X to logic “1,” regardless of Cell X’s drive strength. Thus, this circuit is not 

qualified for its intended design function and should be discarded.  

 

 
 

During fault simulation or Automatic Test Pattern Generation (ATPG), test patterns are 

generated to stimulate the circuit and detect the effects of such SAFs. During this process, every 

single node in the circuit is assumed to have the potential of being stuck at either 0 or 1. The aim 

of a good set of test patterns is to detect all of these faulting nodes in the circuit using a minimum 

of resources. 

 

6. Explain Controllability and Observability. 

Answer: 

The most common approach to testing a digital circuit is to toggle every node inside the circuit  

and observe the corresponding effect. The foundation of this approach is the SAF model. 

However, in practice, this is not always easily achieved. In a circuit of combinational logic, (he 

logic states of the internal nodes can be determined if the circuit’s inputs are all known. But for a 

circuit that includes sequential elements, such as flip-flops and latches, this is not true. Some of 

the node’s logic states depend on these sequential cell’s previous states. This leads to 

controllability and observability issues. 

 

In the design for testability, for any node in a circuit, controllability is defined as the capability 

of a node being driven to 1 or 0 through a circuit’s inputs. If this node can be driven faithfully to 

1 and 0, it is regarded as controllable. Observability is defined as the capability of the logic state 

of this node being observed at the circuit’s outputs. If the logic state of this node can reliably be 

observed, this node is regarded as observable. Whether a circuit node is stuck at 1 (or 0) is only 

testable if that node is both controllable and observable. 

 

 

 

 



7. Explain Design for Testability (DFT). 

Answer: 

Test engineers usually have to construct test vectors after the design is completed. This 

invariably requires a substantial amount of time and effort that could be avoided if testing is 

considered early in the design flow to make the design more testable. As a result, integration of 

design and test, referred to as design for testability (DFT), was proposed in the 1970s. To 

structurally test circuits, we need to control and observe logic values of internal lines. 

Unfortunately, some nodes in sequential circuits can be very difficult to control and observe; for 

example, activity on the most significant bit of an n-bit counter can only be observed after 2n-1 

clock cycles. Testability measures of controllability and observability were first defined in the 

1970s to help find those parts of a digital circuit that will be most difficult to test and to assist in 

test pattern generation for fault detection. Many DFT techniques have been proposed since that 

time.  

 

DFT techniques generally fall into one of the following three categories: 

(1) Ad hoc DFT techniques 

(2) Level-sensitive scan design (LSSD) or scan design 

(3) Built-in self-test (BIST) 

8. Explain Scan based Testing. 

Answer: 

The automatic test generation methodology is well suited for combinational circuits but not very 

useful for sequential circuits. Therefore, for the sequential circuits, a different technique is used, 

which is known as scan design. In this process, all the flip-flops are replaced by a scan flip-flop 

(SFF). The SFF has two modes of operation: (a) normal mode in which the flip-flop is operated 

in the conventional mode; and (b) scan mode in which the flip-flops are connected serially to 

form a large chain of shift registers throughout the entire chip. A test compiler program 

automatically replaces the flip flops by the SFF. This is known as scan chain insertion. By 

applying clock pulses, a large stream of data can be shifted in and out through the scan chain. 

Therefore, every sequential element can be thoroughly verified. A typical SFF is shown in figure 

below. 

 

 
 

A 2:1 multiplexer is added to the input of a normal D-flip-flop to construct an SFF. When scan 

mode is selected to logic 1, the scan-input (SI) data goes to the D-input of SFF, and with a clock 

pulse, scan-input data shifts to the Q-output. The Q-output of SFF is connected to the SI input of 

next SFF, as well as to the input of the logic block. When scan mode is selected to logic 0, the 

data-input (DI) goes to the Q-output, and normal operation proceeds. 

 



9. Explain Serial Scan and Parallel Scan Test. 

Answer: 

Serial Scan Test: 

Figure below shows a schematic of the serial scan test. In the scan-mode, the scan-in data input 

flows through the chain of registers, as illustrated by the dotted line. In the normal mode, the 

normal input flows through the registers and the combinational logic blocks as shown by the 

solid lines. 

 

 

The most popular serial-scan test is called level-sensitive scan design (LSSD), which was 

developed by researchers from IBM in the 1970s. The LSSD is constructed using two latches, L1 

and L2, as shown in figure below. The first latch called the master latch is operated using two 

clocks CLK1 and CLK2. The second latch called the slave is operated using a third clock CLK3. 

The master latch has two data inputs: D1 (data) and D2 (scan-in). 
 

 
 

In the normal circuit operation, the signals D1, CLK1, and Q act as latch input, clock, and the 

output. The test clocks CLK2 and CLK3 are kept low at this mode of operation. In the scan 

mode, the D2 and SO signals act as scan-in and scan-out. In scan mode, the clock CLK1 is kept 

low, and the clocks CLK2 and CLK3 are applied by two non-overlapping two-phase clock 

signals. 

 

 

 



Parallel Scan Test: 

For large circuits, the size of the scan chain is too big, and there, the scan test requires a 

significant amount of time. To avoid this, the whole scan-chain is divided into smaller scan-

blocks, and each block is scanned independently. This way it saves the overall scan test time. 

 

10.  Explain Built in Self Test (BIST). 

Answer: 

Built-in Self-Test, or BIST, is the technique of designing additional hardware and software 

features into integrated circuits to allow them to perform self-testing, i.e., testing of their own 

operation (functionally, parametrically, or both) using their own circuits, thereby reducing 

dependence on an external automated test equipment (ATE). 

 

BIST is a Design-for-Testability (DFT) technique, because it makes the electrical testing of a 

chip easier, faster, and more efficient, aid less costly. The concept of BIST is applicable to just 

about any kind of circuit, so its implementation can vary as widely as the product diversity that it 

caters to. As an example, a common BIST approach for DRAM’s includes the incorporation onto 

the chip of additional circuits for pattern generation, timing, mode selection, and go/no-go 

diagnostic tests. 

 

The general format of a built-in self-test design is illustrated in figure below. It contains a means 

for supplying test patterns to the device under test and a means of comparing the device’s 

response to a known correct sequence. 

 

 
 

There are many ways to generate stimuli. Most widely used are the exhaustive and the random 

approaches. In the exhaustive approach, the test length is 2n where n is the number of inputs to 

the circuit. The exhaustive nature of the test means that all detectable faults will be detected, 

given the space of the available input signals. An N-bit counter is a good example of an 

exhaustive pattern generator. For circuits with large values of N, the time to cycle through the 

complete input space might be prohibitive. An alternate approach is to use random testing that 

implies the application of a randomly chosen subset of 2n possible input patterns. This subset 

should be selected so that reasonable fault coverage is obtained. An example of a pseudorandom 

pattern generator is the linear-feedback shift register (or LFSR), which is shown in figure below.  

It consists of a serial connection of 1-bit registers. Some of the outputs are XOR’d and fed back 

to the input of the shift register. An N-bit LFSR cycles through 2n-1 states before repeating the 

sequence, which produces a seemingly random pattern. Initialization of the registers to a given 

seed value determines what will be generated, subsequently. 

 



 
 

The response analyzer could be implemented as a comparison between the generated response 

and the expected response stored in an on-chip memory, but this approach represents too much 

area overhead to be practical. A cheaper technique is to compress the responses before 

comparing them. Storing the compressed response of the correct circuit requires only a minimal 

amount of memory, especially when the compression ratio is high. The response analyzer then 

consists of circuitry that dynamically compresses the output of the circuit under test and the 

comparator. The compressed output is often called the signature of the circuit, and the overall 

approach is dubbed signature analysis. 

 

11. Define the following terms. 

a) Yield 

b) Reject Rate 

c) Fault Coverage 

d) Fault Detection Efficiency 

Answer: 

a) Yield 

The yield of a manufacturing process is defined as the percentage of acceptable parts among 

all parts that are fabricated. 

 

 
 

b) Reject Rate 

The ratio of field-rejected parts to all parts passing quality assurance testing is referred to as 

the reject rate, also called the defect level. 

 

 
 

c) Fault Coverage 

Fault coverage is defined as the ratio of number of faults detected in a circuit to the total 

number of faults present in the circuit. 

 

 
 



d) Fault Detection Efficiency 

 

 


	1. Explain the operation of 6 transistor SRAM cell. Answer:

