	[image: logo01]CMR ENGINEERING COLLEGE
Kandlakoya(v),Medchal Road,Hyderabad-501401
Ph.Nos.08418-200037, 9247022662
Dept of Information & Technology

STEP MATERIAL

Sub: Object Oriented Programming Through Java
Prepared By: MD.Gulzar, Asst Prof
				

UNIT-1
1. Define Encapsulation?
Encapsulation in Java is a mechanism of wrapping the data (variables) and code acting on the data (methods) together as a single unit. In encapsulation, the variables of a class will be hidden from other classes, and can be accessed only through the methods of their current class. Therefore, it is also known as data hiding.
2. Define Inheritance?
Inheritance can be defined as the process where one class acquires the properties (methods and fields) of another.
The class which inherits the properties of other is known as subclass (derived class, child class) and the class whose properties are inherited is known as superclass (base class, parent class).
3. Define Polymorphism?
Polymorphism is the ability of an object to take on many forms.
There are two types of polymorphism in java: compile time polymorphism and runtime polymorphism. We can perform polymorphism in java by method overloading and method overriding.
4. Briefly explain history of Java?
James Gosling initiated Java language project in June 1991 for use in one of his many set-top box projects. The language, initially called ‘Oak’ after an oak tree that stood outside Gosling's office, also went by the name ‘Green’ and ended up later being renamed as Java, from a list of random words.
5. Describe a constant?
Constants are variables that are declared as public/private, final, and static. Constant variables never change from their initial value.
For example, the following variable declaration defines a constant named PI, whose value is an approximation of pi (the ratio of the circumference of a circle to its diameter):
static final double PI = 3.141592653589793;
6. Define Scope and life time of variables?

Scope refers to the lifetime and accessibility of a variable. How large the scope is depends on where a variable is declared.
For example, if a variable is declared at the top of a class then it will accessible to all of the class methods. If it’s declared in a method then it can only be used in that method.
7. List types of operators?
Java provides a rich set of operators to manipulate variables. All Java operators are classified into the following groups:
· Arithmetic Operators
· Relational Operators
· Bitwise Operators
· Logical Operators
· Assignment Operators
? Operator

8. Define implicit type casting?
A data type of lower size (occupying less memory) is assigned to a data type of higher size. This is done implicitly by the JVM. The lower size is widened to higher size. This is also named as automatic type conversion.

9. Define explicit type casting?
A data type of higher size (occupying more memory) cannot be assigned to a data type of lower size. This is not done implicitly by the JVM and requires explicit casting; a casting operation to be performed by the programmer. The higher size is narrowed to lower size.

10. Define enumerated data type?
An enum type is a special data type that enables for a variable to be a set of predefined constants. The java enum constants are static and final implicitly.
11. Define an array?
An array is a group of like-typed variables that are referred to by a common name. Arrays of any type can be created and may have one or more dimensions. A specific element in an array is accessed by its index. Arrays offer a convenient means of grouping related information.

12. Define this reference?
In java, “this” is a reference variable that refers to the current object.
“this” keyword can be used to refer current class instance variable.

13. Define Constructor?
Constructor in java is a special type of method that is used to initialize the object. Java constructor is invoked at the time of object creation.
14. Define Recursion?
Recursion in java is a process in which a method calls itself continuously. A method in java that calls itself is called recursive method.
Ex: Factorial of a number, Fibonacci series.
15. Define Garbage collection?
In java, garbage means unreferenced objects.
Garbage Collection is process of reclaiming the runtime unused memory automatically. In other words, it is a way to destroy the unused objects.

LAQ:
1. Distinguish between Procedure Oriented Programming and Object Oriented Programming?
[image: E:\CMR\111111111111.jpg]
2. Describe features (buzzwords) of Java Programming Language?
Simple:
Java is easy to learn and its syntax is quite simple, clean and easy to understand. The confusing and ambiguous concepts of C++ are either left out in Java or they have been re-implemented in a cleaner way.
Eg : Pointers and Operator Overloading are not there in java but were an important part of C++.
Object-Oriented: Java is purely object oriented.
Object-oriented means we organize our software as a combination of different types of objects that incorporates both data and behavior. This feature allows for re-usability of code and maintainability.
Platform independent: A platform is the hardware or software environment in which a program runs.
Java provides software-based platform. Java code can be run on multiple platforms e.g. Windows, Linux, Sun Solaris, Mac/OS etc. Java code is compiled by the compiler and converted into bytecode. This bytecode is a platform-independent code because it can be run on multiple platforms i.e. Write Once and Run Anywhere(WORA).
[image: Java is platform Independent Language]
Fig: Java Compilation Process

Secure:
Java program always runs in Java runtime environment with almost null interaction with system OS, hence it is virus free and tamper free with more security.
Robust: Robust means strong.
Java improved were Memory Management and mishandled Exceptions by introducing automatic Garbage Collector and Exception Handling.
Architecture neutral:
Java compiler generates an architecture-neutral object file format, which makes the compiled code executable on many processors, with the presence of Java runtime system.
Portable:
Being architecture-neutral and having no implementation dependent aspects of the specification makes Java portable. Compiler in Java is written in ANSI C with a clean portability boundary, which is a POSIX subset.
Dynamic:
Java programs carry with them substantial amounts of run-time type information that is used to verify and resolve accesses to objects at run time.

Interpreted :
Java byte code is translated on the fly to native machine instructions and is not stored anywhere. The development process is more rapid and analytical since the linking is an incremental and light-weight process.

High Performance:
With the use of Just-In-Time compilers, Java enables high performance.
Multithreaded:
With Java's multithreaded feature it is possible to write programs that can perform many tasks simultaneously. This design feature allows the developers to construct interactive applications that can run smoothly.

Distributed:
Java is designed for the distributed environment of the internet.
3. What is this reference in java?Explain its usage.
In java, “this” is a reference variable that refers to the current object.
Usage of java “this” keyword:
1. this keyword can be used to refer current class instance variable.
2. this() can be used to invoke current class constructor.
3. this keyword can be used to invoke current class method (implicitly)
4. this can be passed as an argument in the method call.
5. this can be passed as argument in the constructor call.
6. this keyword can also be used to return the current class instance.
4. Write about the method overloading with an example?
When a class has two or more methods by the same name but different parameters, it is known as method overloading. It is different from overriding. In overriding, a method has the same method name, type, number of parameters, etc.

Different ways to overload the method
	There are two ways to overload the method in java

1. By changing number of arguments
2. By changing the data type
METHOD OVERLOADING BY CHANGING THE NO. OF ARGUMENTS
class Calculation{
 void sum(int a,int b){System.out.println(a+b);}
 void sum(int a,int b,int c){System.out.println(a+b+c);}

 public static void main(String args[]){
 Calculation obj=new Calculation();
 obj.sum(10,10,10);
 obj.sum(20,20);

 }
}

Output:30
 40
5. Write about the constructor overloading with an example?
Constructor Overloading in Java
	Constructor overloading is a technique in Java in which a class can have any number of constructors that differ in parameter lists. The compiler differentiates these constructors by taking into account the number of parameters in the list and their type.

CONSTRUCTOR OVERLOADING
class Student5{
 int id;
 String name;
 int age;
 Student5(int i,String n){
 id = i;
 name = n;
 }
 Student5(int i,String n,int a){
 id = i;
 name = n;
 age=a;
 }
 void display(){System.out.println(id+" "+name+" "+age);}
 public static void main(String args[]){
 Student5 s1 = new Student5(111,"Karan");
 Student5 s2 = new Student5(222,"Aryan",25);
 s1.display();
 s2.display(); } }
Output:
111 Karan 0
222 Aryan 25
6. What is an array? Explain different types of array with example?
An array is a group of like-typed variables that are referred to by a common name. Arrays of any type can be created and may have one or more dimensions. A specific element in an array is accessed by its index. Arrays offer a convenient means of grouping related information.

One-Dimensional Arrays
A one-dimensional array is, essentially, a list of like-typed variables.
The general form of a one-dimensional array declaration is:
type var-name[];
Here, type declares the base type of the array.
Example:
class AutoArray {
public static void main(String args[]) {
int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31 };
System.out.println("April has " + month_days[3] + " days.");
}
}

Multidimensional Arrays
In Java, multidimensional arrays are actually arrays of arrays.
For example, the following declares a two dimensional array variable called twoD.

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD.
CODE FOR ARRAY (TWO-DIMENSIONAL)
class TwoDArray {
public static void main(String args[]) {
int twoD[][]= new int[4][5]; // Demonstrate a two-dimensional array.

int i, j, k = 0;
for(i=0; i<4; i++)
for(j=0; j<5; j++) {
twoD[i][j] = k;
k++;
}
for(i=0; i<4; i++) {
for(j=0; j<5; j++)
System.out.print(twoD[i][j] + " ");
System.out.println();
}
}
}
This program generates the following output:
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
7. Define static keyword with its application to variable, method and block?
Java Static Methods and Variables
Types of Variable
1. static variables
2. static methods
3. static blocks of code
Java static variable
· It is a variable which belongs to the class and not to object(instance)
· Syntax : <class-name>.<variable-name>
Java Static Method
· It is a method which belongs to the class and not to the object(instance)
· Syntax : <class-name>.<method-name>
static block
The static block, is a block of statement inside a Java class that will be executed when a class is first loaded in to the JVM

8. Explain switch and break statements with an example program?
Switch Statement in Java
A switch statement allows a variable to be tested for equality against a list of values. Each value is called a case, and the variable being switched on is checked for each case.

Syntax
The syntax of enhanced for loop is:
switch(expression){
case value :
//Statements
break; //optional
case value :
//Statements
break; //optional
//You can have any number of case statements.
default : //Optional
//Statements
}

SWITCH
public class Test {
public static void main(String args[]){
char grade = 'C'; //char grade = args[0].charAt(0);
switch(grade) {
case 'A' :
System.out.println("Excellent!");
break;
case 'B' :
System.out.println("Very Good");
break;
case 'C' :
System.out.println("Well done");
break;
case 'D' :
System.out.println("You passed");
case 'F' :
System.out.println("Better try again");
break;
default :
System.out.println("Invalid grade"); }
System.out.println("Your grade is " + grade); } }

This will produce the following result:
$ java Test
Well done
Your grade is a C

9. Explain for loop with an example program?
for Loop in Java
A for loop is a repetition control structure that allows you to efficiently write a loop that needs to be executed a specific number of times.
Syntax
The syntax of a for loop is:
for(initialization; Boolean_expression; update)
{
//Statements
}

CODE OF THE FOR LOOP IN JAVA.
public class Test {
public static void main(String args[]) {
for(int x = 10; x < 20; x = x+1) {
System.out.print("value of x : " + x);
System.out.print("\n");
} } }

This will produce the following result:
value of x : 10
value of x : 11
value of x : 12
value of x : 13
value of x : 14
value of x : 15
value of x : 16
value of x : 17
value of x : 18
value of x : 19

10. Explain a selection statement with an example program?
If Statement in Java
An if statement consists of a Boolean expression followed by one or more statements.

Syntax

Following is the syntax of an if statement:

if(Boolean_expression)
{
//Statements will execute if the Boolean expression is true
}

C 1.15 CODE FOR “IF” STATEMENT
public class Test {
public static void main(String args[]){
int x = 10;
if(x < 20){
System.out.print("Value of x is less than 20");
} } }

This will produce the following result:

Value of x is less than 20

UNIT – IV

The Collections Framework (java.util)- Collections overview, Collection Interfaces, The Collection classes- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Accessing a Collection via an Iterator, Using an Iterator, The For-Each alternative, Map Interfaces and Classes, Comparators, Collection algorithms, Arrays, The Legacy Classes and Interfaces- Dictionary, Hashtable ,Properties, Stack, Vector More Utility classes, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner

SHORT ANSWER QUESTIONS
1. Define collections?
Collections in java is a framework that provides an architecture to store and manipulate the group of objects.
All the operations that you perform on a data such as searching, sorting, insertion, manipulation, deletion etc. can be performed by Java Collections.
2. What is Java collection framework?
Collection framework represents a unified architecture for storing and manipulating group of objects.
It has:
1. Interfaces and its implementations i.e. classes
2. Algorithm
3. Define ArrayList with syntax?
Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList class and implements List interface.
Syntax
public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, Serializable
4. Define HashTable with syntax?
Java Hashtable class implements a hashtable, which maps keys to values. It inherits Dictionary class and implements the Map interface.
Syntax:
public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>, Cloneable, Serializable
5. What is an iterator interface in java ?
Iterator interface provides the facility of iterating the elements in forward direction only.
There are three methods in the Iterator interface.
public boolean hasNext(),
public object next(),
public void remove()
6. Define properties class in java?
The properties object contains key and value pair both as a string. The java.util.Properties class is the subclass of Hashtable.
It can be used to get property value based on the property key. The Properties class provides methods to get data from properties file and store data into properties file. Moreover, it can be used to get properties of system.
7. Define Random class in java?
The java.util.Random class instance is used to generate a stream of pseudorandom numbers.
Syntax:
public class Random
extends Object
implements Serializable
8. Define Scanner class in java?
The Java Scanner class breaks the input into tokens using a delimiter that is whitespace bydefault. It provides many methods to read and parse various primitive values. Java Scanner class is widely used to parse text for string and primitive types using regular expression.
Java Scanner class extends Object class and implements Iterator and Closeable interfaces.
9. Define stream?
A stream can be defined as a sequence of data. There are two kinds of Streams.
· InPutStream − The InputStream is used to read data from a source.
· OutPutStream − The OutputStream is used for writing data to a destination.
10. Define byte stream?
Java byte streams are used to perform input and output of 8-bit bytes. Though there are many classes related to byte streams but the most frequently used classes are, FileInputStream and FileOutputStream.
11. Define character stream?
Java Character streams are used to perform input and output for 16-bit unicode. Though there are many classes related to byte streams but the most frequently used classes are, FileInputStream and FileOutputStream.

Long Answer Questions.
1. Write about Vector with an explain its working with an example program?
Vector implements a dynamic array. It is similar to ArrayList, but with two differences −
· Vector is synchronized.
· Vector contains many legacy methods that are not part of the collections framework.
· Vector proves to be very useful if you don't know the size of the array in advance or you just need one that can change sizes over the lifetime of a program.

Code for Vector implementation.
import java.util.*;
public class VectorDemo {
public static void main(String args[]) {
// initial size is 3, increment is 2
Vector v = new Vector(3, 2);
System.out.println("Initial size: " + v.size());
System.out.println("Initial capacity: " + v.capacity());
v.addElement(new Integer(1));
v.addElement(new Integer(2));
v.addElement(new Integer(3));
v.addElement(new Integer(4));
System.out.println("Capacity after four additions: " + v.capacity());
v.addElement(new Double(5.45));
System.out.println("Current capacity: " + v.capacity());
v.addElement(new Double(6.08));
v.addElement(new Integer(7));
System.out.println("Current capacity: " + v.capacity());
v.addElement(new Float(9.4));
v.addElement(new Integer(10));
System.out.println("Current capacity: " + v.capacity());
v.addElement(new Integer(11));
v.addElement(new Integer(12));
System.out.println("First element: " + (Integer)v.firstElement());
System.out.println("Last element: " + (Integer)v.lastElement());
if(v.contains(new Integer(3)))
System.out.println("Vector contains 3.");
// enumerate the elements in the vector.
Enumeration vEnum = v.elements();
System.out.println("\nElements in vector:");
while(vEnum.hasMoreElements())
System.out.print(vEnum.nextElement() + " ");
System.out.println();
}
}
This will produce the following result −
Output:
Initial size: 0
Initial capacity: 3
Capacity after four additions: 5
Current capacity: 5
Current capacity: 7
Current capacity: 9
First element: 1
Last element: 12
Vector contains 3.
Elements in vector:
1 2 3 4 5.45 6.08 7 9.4 10 11 12

2. Explain HashTable class in java with an example program?
Java Hashtable class implements a hashtable, which maps keys to values. It inherits Dictionary class and implements the Map interface.
The important points about Java Hashtable class are:
· A Hashtable is an array of list. Each list is known as a bucket. The position of bucket is identified by calling the hashcode() method. A Hashtable contains values based on the key.
· It contains only unique elements.
· It may have not have any null key or value.
· It is synchronized.
Hashtable class Parameters
The Parameters for java.util.Hashtable class are:
· K: It is the type of keys maintained by this map.
· V: It is the type of mapped values.

Example program (HashTable):
import java.util.*;
class TestCollection16{
public static void main(String args[]){
Hashtable<Integer,String> hm=new Hashtable<Integer,String>();
hm.put(100,"Amit");
hm.put(102,"Ravi");
hm.put(101,"Vijay");
hm.put(103,"Rahul");
for(Map.Entry m:hm.entrySet()){
System.out.println(m.getKey()+" "+m.getValue());
}
}
}
OUTPUT:
103 Rahul
102 Ravi
101 Vijay
100 Amit
3. Explain the features of ArrayList with an example Program?
Java ArrayList class uses a dynamic array for storing the elements. It inherits
AbstractList class and implements List interface.
The important features Java ArrayList class are:
· Java ArrayList class can contain duplicate elements.
· Java ArrayList class maintains insertion order.
· Java ArrayList class is non synchronized.
· Java ArrayList allows random access because array works at the index basis.
· In Java ArrayList class, manipulation is slow because a lot of shifting needs to be occurred if any element is removed from the array list.

[image:]
Fig: Hierarchy of ArrayList

Example Program:
import java.util.*;
class TestCollection1{
public static void main(String args[]){
ArrayList<String> list=new ArrayList<String>();//Creating arraylist
list.add("Ravi");//Adding object in arraylist
list.add("Vijay");
list.add("Ravi");
list.add("Ajay");
//Traversing list through Iterator
Iterator itr=list.iterator();
while(itr.hasNext()){
System.out.println(itr.next());
}
}
}
Output: Ravi
Vijay
Ravi
Ajay

4. What is stack? Perform stack operations push and pop in java?
Stack is a subclass of Vector that implements a standard last-in, first-out stack.
Stack only defines the default constructor, which creates an empty stack. Stack includes all the methods defined by Vector, and adds several of its own.
Syntax: Stack()

import java.util.*;
public class StackDemo {
static void showpush(Stack st, int a) {
st.push(new Integer(a));
System.out.println("push(" + a + ")");
System.out.println("stack: " + st);
}
static void showpop(Stack st) {
System.out.print("pop -> ");
Integer a = (Integer) st.pop();
System.out.println(a);
System.out.println("stack: " + st);
}
public static void main(String args[]) {
Stack st = new Stack();
System.out.println("stack: " + st);
showpush(st, 42);
showpush(st, 66);
showpush(st, 99);
showpop(st);
showpop(st);
showpop(st);
try {
showpop(st);
}catch (EmptyStackException e) {
System.out.println("empty stack");
}
}
}
OUTPUT:
stack: []
push(42)
stack: [42]
push(66)
stack: [42, 66]
push(99)
stack: [42, 66, 99]
pop -> 99
stack: [42, 66]
pop -> 66
stack: [42]
pop -> 42
stack: []
pop -> empty stack

5. Explain the differences between iterator and enumeration in java?

[image:]

6. What is Enumeration interface in java collections? Explain with an example program program.
It is used to navigate through legacy collection classes. It is a legacy collection interface, which
is used to iterate through legacy collections.
The Enumeration interface defines the methods by which can be enumerated (obtain one at a
time) the elements in a collection of objects.
This legacy interface has been superceded by Iterator. Although not deprecated, Enumeration is
considered obsolete for new code. However, it is used by several methods defined by the legacy
classes such as Vector and Properties, is used by several other API classes.
The methods declared by Enumeration are summarized in the following table:
SN Methods with Description
1
boolean hasMoreElements()
When implemented, it must return true while there are still more
elements to extract, and false when all the elements have been
enumerated.
2
Object nextElement()
This returns the next object in the enumeration as a generic Object
reference.
EXAMPLE:
Following is the example showing usage of Enumeration.
import java.util.Vector;
import java.util.Enumeration;
public class EnumerationTester {
public static void main(String args[]) {
Enumeration days;
Vector dayNames = new Vector();
dayNames.add("Sunday");
dayNames.add("Monday");
dayNames.add("Tuesday");
dayNames.add("Wednesday");
dayNames.add("Thursday");
dayNames.add("Friday");
dayNames.add("Saturday");
days = dayNames.elements();
while (days.hasMoreElements()){
System.out.println(days.nextElement());
}
}
}
This would produce the following result:
14
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
7. Explain the LinkedList collection class in java along with methods and an example program.
Java LinkedList class is used to store the elements. It provides a linked-list data structure. It inherits the AbstractList class and implements List and Deque interfaces.
The important points about Java LinkedList are:
· Java LinkedList class can contain duplicate elements.
· Java LinkedList class maintains insertion order.
· Java LinkedList class is non synchronized.
· In Java LinkedList class, manipulation is fast because no shifting needs to be occurred.
· Java LinkedList class can be used as list, stack or queue.
	
	Methods of Linked List
	

	1
	void add(int index, Object element)
	It is used to insert the specified element at the specified position index in a list.

	2
	void addFirst(Object o)
	It is used to insert the given element at the beginning of a list.

	3
	void addLast(Object o)
	It is used to append the given element to the end of a list.

	4
	int size()
	It is used to return the number of elements in a list

	5
	boolean add(Object o)
	It is used to append the specified element to the end of a list.

	6
	boolean remove(Object o)
	It is used to remove the first occurence of the specified element in a list.

	7
	Object getFirst()
	It is used to return the first element in a list.

	8
	Object getLast()
	It is used to return the last element in a list.

	9
	int indexOf(Object o)
	It is used to return the index in a list of the first occurrence of the specified element, or -1 if the list does not contain any element.

	10
	int lastIndexOf(Object o)
	It is used to return the index in a list of the last occurrence of the specified element, or -1 if the list does not contain any element.

8. Explain the working of TreeSet with an example program.
Java TreeSet class implements the Set interface that uses a tree for storage.

A TreeSet
· Contains unique elements only like HashSet.
· Access and retrieval times are quiet fast.
· Maintains ascending order.
Methods used with TreeSet
[image: C:\Users\kumar\Pictures\TreeSet Java methods.jpg]

Java program to demonstrate the working of TreeSet
import java.util.*;
class TestCollection11{
 public static void main(String args[]){
 //Creating and adding elements
 TreeSet<String> al=new TreeSet<String>();
 al.add("Ravi");
 al.add("Vijay");
 al.add("Ravi");
 al.add("Ajay");
 //Traversing elements
 Iterator<String> itr=al.iterator();
 while(itr.hasNext()){
 System.out.println(itr.next());
 }
 }
}
OUTPUT:

Ajay
Ravi
Vijay
9. What is PriorityQueue in java? Demonstrate its working with a java program.
Priority Queue
The PriorityQueue class provides the facility of using queue. But it does not orders the elements in FIFO manner.

· PriorityQueue doesn’t allow null
· The elements of the priority queue are ordered according to their natural ordering
· The queue retrieval operations poll, remove, peek, and element access the element at the head of the queue.
· It inherits methods from AbstractQueue, AbstractCollection, Collection and Object class.

Methods with PriorityQueue

	Sl no.
	Method
	Description

	1
	booleanadd(E element)
	This method inserts the specified element into this priority queue.

	2
	public remove()
	This method removes a single instance of the specified element from this queue, if it is present

	3
	public poll()
	This method retrieves and removes the head of this queue, or returns null if this queue is empty.

	4
	public peek()
	This method retrieves, but does not remove, the head of this queue, or returns null if this queue is empty.

	5
	iterator()
	Returns an iterator over the elements in this queue.

	6
	booleancontains(Object o)
	This method returns true if this queue contains the specified element

Java program to demonstrate the working of PriorityQueue

import java.util.*;
class PriorityQueueDemo{
public static void main(String args[]){
PriorityQueue<String> queue=new PriorityQueue<String>();
queue.add("Amit");
queue.add("Vijay");
queue.add("Karan");
queue.add("Jai");
queue.add("Rahul");
System.out.println("head:"+queue.element());
System.out.println("head:"+queue.peek());
System.out.println("iterating the queue elements:");
Iterator itr=queue.iterator();
while(itr.hasNext()){
System.out.println(itr.next());
}
queue.remove();
queue.poll();
System.out.println("after removing two elements:");
Iterator<String> itr2=queue.iterator();
while(itr2.hasNext()){
System.out.println(itr2.next());
}
}
}
Output:head:Amit
 head:Amit
 iterating the queue elements:
 Amit
 Jai
 Karan
 Vijay
 Rahul
 after removing two elements:
 Karan
 Rahul
 Vijay

10. Write a java program to perform and, or and xor operation using BitSet collection class.
The BitSet class creates a special type of array that holds bit values. The BitSet array can increase in size as needed. This makes it similar to a vector of bits. This is a legacy class
Source Code:
import java.util.BitSet;
public class BitSetDemo {

 public static void main(String args[]) {
 BitSet bits1 = new BitSet(16);
 BitSet bits2 = new BitSet(16);

 // set some bits
 for(int i = 0; i < 16; i++) {
 if((i % 2) == 0) bits1.set(i);
 if((i % 5) != 0) bits2.set(i);
 }

 System.out.println("Initial pattern in bits1: ");
 System.out.println(bits1);
 System.out.println("\nInitial pattern in bits2: ");
 System.out.println(bits2);

 // AND bits
 bits2.and(bits1);
 System.out.println("\nbits2 AND bits1: ");
 System.out.println(bits2);

 // OR bits
 bits2.or(bits1);
 System.out.println("\nbits2 OR bits1: ");
 System.out.println(bits2);

 // XOR bits
 bits2.xor(bits1);
 System.out.println("\nbits2 XOR bits1: ");
 System.out.println(bits2);
 }
}

image5.emf

image6.jpeg

image1.png

image2.jpeg

image3.jpeg

image4.emf

