Machine Learning
III BTech(IT),I Sem

Step Material

1.Define Machine Learning?

Definition: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

For example, a computer program that learns to play checkers might improve its performance as measured by its abiliry to win at the class of tasks involving playing checkers games, through experience obtained by playing games against itself

2.Explain about wellposed learning problems?

For example, a computer program that learns to play checkers might improve its performance as measured by its abiliry to win at the class of tasks involving playing checkers games, through experience obtained by playing games against itself. In general, to have a well-defined learning problem

three features: the class of tasks, the measure of performance to be improved, and the source of experience.

A checkers learning problem: Task T: playing checkers 0 Performance measure P: percent of games won against opponents Training experience E: playing practice games against itself

We can specify many learning problems in this fashion, such as learning to recognize handwritten words, or learning to drive a robotic automobile autonomously.

A handwriting recognition learning problem:

Task T: recognizing and classifying handwritten words within images 0 Performance measure P: percent of words correctly classified

Training experience E: a database of handwritten words with given classifications A robot driving learning problem:

Task T: driving on public four-lane highways using vision sensors

 Performance measure P: average distance traveled before an error (as judged by human overseer) Training experience E: a sequence of images and steering commands recorded while observing a human driver

3.Explain issues in Machine Learning?

 What algorithms exist for learning general target functions from specific training examples? In what settings will particular algorithms converge to the desired function, given sufficient training data?

Which algorithms perform best for which types of problems and representations? How much training data is sufficient?

 What general bounds can be found to relate the confidence in learned hypotheses to the amount of training experience and the character of the learner's hypothesis space?

When and how can prior knowledge held by the learner guide the process of generalizing from examples? Can prior knowledge be helpful even when it is only approximately correct?

What is the best strategy for choosing a useful next training experience, and how does the choice of this strategy alter the complexity of the learning problem?

What is the best way to reduce the learning task to one or more function approximation problems? Put another way, what specific functions should the system attempt to learn?

 Can this process itself be automated? How can the learner automatically alter its representation to improve its ability to represent and learn the target function?

4.Explain Fnd S algorithm

1. Initialize h to the most specific hypothesis in H

2. For each positive training instance x 0 For each attribute constraint a, in h If the constraint a, is satisfied by x Then do nothing Else replace a, in h by the next more general constraint that is satisfied by x

 3. Output hypothesis h

5.Explain about ID3 algorithm?

ID3(Examples, Targetattribute, Attributes) Examples are the training examples.

Targetattribute is the attribute whose value is to be predicted by the tree.

 Attributes is a list of other attributes that may be tested by the learned decision tree.

Returns a decision tree that correctly classiJies the given Examples. Create a Root node for the tree If all Examples are positive, Return the single-node tree Root, with label = +

If all Examples are negative, Return the single-node tree Root, with label = -

If Attributes is empty, Return the single-node tree Root, with label = most common value of Target attribute in Examples Otherwise Begin A t the attribute from Attributes that best* classifies Examples 0

 The decision attribute for Root c A For each possible value, vi, of A, Add a new tree branch below Root, corresponding to the test A = vi 0 Let Examples,, be the subset of Examples that have value vi for A

If Examples,, is empty Then below this new branch add a leaf node with label = most common value of Target attribute in Examples Else below this new branch add the subtree ID3(Examples,,, Targetattribute, Attributes - (A)

End Return Root

6.Explain about sample complexity,computational complexity and Mistake bound?

 Sample complexity. How many training examples are needed for a learner to converge (with high probability) to a successful hypothesis?

Computational complexity. How much computational effort is needed for a learner to converge (with high probability) to a successful hypothesis?

Mistake bound. How many training examples will the learner misclassify before converging to a successful hypothesis?

7.Explain Remarkson Lazy and Eagar learning?

we considered three lazy learning methods: the k-NEAREST NEIGHBOR algorithm, locally weighted regression, and case-based reasoning.

We call these methods lazy because they defer the decision of how to generalize beyond the training data until each new query instance is encountered. We also discussed one eager learning method: the method for learning radial basis function networks.

 We call this method eager because it generalizes beyond the training data before observing the new query, committing at training time to the network structure and weights that define its approximation to the target function.

In this same sense, every other algorithm discussed elsewhere in this book (e.g., BACKPROPAGATION, C4.5) is an eager learning algorithm.

Are there important differences in what can be achieved by lazy versus eager learning?

 Let us distinguish between two kinds of differences: differences in computation time and differences in the classifications produced for new queries.

 There are obviously differences in computation time between eager and lazy methods. For example, lazy methods will generally require less computation during training, but more computation when they must predict the target value for a new query.

The more fundamental question is whether there are essential differences in the inductive bias that can be achieved by lazy versus eager methods. The key difference between lazy and eager methods in this regard is

 Lazy methods may consider the query instance x, when deciding how to generalize beyond the training data D.

 Eager methods cannot. By the time they observe the query instance x, they have already chosen their (global) approximation to the target function.

8.what is Regression,Residual and kernel function?

 Regression means approximating a real-valued target function.

 Residual is the error {(x) - f (x) in approximating the target function.

Kernel function is the function of distance that is used to determine the weight of each training example. In other words, the kernel function is the function K such that wi = K(d(xi, x,)).

9.what are Genetic operators?

Mutation and crossover are Genetic operators.

10.what is Horn clause?

A clause is any disjunction of literals M1 v . . . Mn whose variables are universally quantified.

A Horn clause is an expression of the form where H, L1 . . . Ln are positive literals. H is called the head or consequent of the Horn clause. The conjunction of literals L1 A L2 A ...A L, is called the body or antecedents of the Horn clause. For any literals A and B, the expression (A t B) is equivalent to (A v -B), and the expression -(A A B) is equivalent to (-A v -B). Therefore, a Horn clause can equivalently be written as the disjunction Hv-L1 v...v-L, A substitution is any function that replaces variables by terms

11.Explain PROLOG EBC?

PROWG-EBG(TargetConcept, TrainingExamples, DomainTheory)

LearnedRules c (1 0 Pos c the positive examples from TrainingExamples

for each PositiveExample in Pos that is not covered by LearnedRules, do

 I. Explain: Explanation c an explanation (proof) in terms of the DomainTheory that PositiveExample satisfies the TargetConcept

2. Analyze: SufJicientConditions t the most general set of features of PositiveExample sufficient to satisfy the TargetConcept according to the Explanation.

 3. Rejine: 0 Learned Rules c LearnedRules + New Horn Clause, where New Horn CIause is of the form TargetConcept c SufJicient Conditions

 Return Learned Rules

12.Explain Resolution operator?

1. Given initial clauses C1 and C2, find a literal L from clause C1 such that -L occurs in clause C2.

2. Form the resolvent C by including all literals from C1 and C2, except for L and -L. More precisely, the set of literals occurring in the conclusion C is where u denotes set union, and "-" denotes set difference.

13.what is inductive and analytical learning?

In inductive learning, the learner is given a hypothesis space H from which it must select an output hypothesis, and a set of training examples D = {(xl, f (x~)), . . . (x,, f (x,))} where f (xi) is the target value for the instance xi. The desired output of the learner is a hypothesis h from H that is consistent with these training examples.

 In analytical learning, the input to the learner includes the same hypothesis space H and training examples D as for inductive learning. In addition, the learner is provided an additional input: A domain theory B consisting of background knowledge that can be used to explain observed training examples. The desired output of ,the learner is a hypothesis h from H that is consistent with both the training eamples D and the domain theory B

14. what are the Remarks on Explanation based learning?

PROLOG-EBG conducts a detailed analysis of individual training examples to determine how best to generalize from the specific example to a general Horn clause hypothesis. The following are the key properties of this algorithm.

 Unlike inductive methods, PROLOG-EBG produces justified general hypotheses by using prior knowledge to analyze individual examples.

The explanation of how the example satisfies the target concept determines which example attributes are relevant: those mentioned by the explanation.

 The further analysis of the explanation, regressing the target concept to determine its weakest preimage with respect to the explanation, allows deriving more general constraints on the values of the relevant features.

 Each learned Horn clause corresponds to a sufficient condition for satisfying the target concept. The set of learned Horn clauses covers the positive training examples encountered by the learner, as well as other instances that share the same explanations.

 The generality of the learned Horn clauses will depend on the formulation of the domain theory and on the sequence in which training examples are considered.

 PROLOG-EBG implicitly assumes that the domain theory is correct and complete. If the domain theory is incorrect or incomplete, the resulting learned concept may also be incorrect. There are several related perspectives on explanation-based learning that help to understand its capabilities and limitations.

15.what is Analytical learning?

It requires prior knowledge and domain theory

16.Explain Learning problem?

Given: A set of training examples D, possibly containing errors

A domain theory B, possibly containing errors A space of candidate hypotheses H

Determine: A hypothesis that best fits the training examples and domain theory

17.Explain Q learning algorithm?

For each s, a initialize the table entry Q~(s, a) to zero.

Observe the current state s

Do forever:

Select an action a and execute it

 Receive immediate reward r

Observe the new state s'

Update the table entry for Q~(s, a) as follows:

 Q~(s,a) <- r + ymaxQ(s1,a 1)

18.Explain Reinforcement learning?

Reinforcement learning addresses the question of how an autonomous agent that senses and acts in its environment can learn to choose optimal actions to achieve its goals. This very generic problem covers tasks such as learning to control a mobile robot, learning to optimize operations in factories, and learning to play board games. Each time the agent performs an action in its environment, a trainer may provide a reward or penalty to indicate the desirability of the resulting state. For example, when training an agent to play a game the trainer might provide a positive reward when the game is won, negative reward when it is lost, and zero reward in all other states. The task of the agent is to learn from this indirect, delayed reward, to choose sequences of actions that produce the greatest cumulative reward. This chapter focuses on an algorithm called Q learning that can acquire optimal control strategies from delayed rewards, even when the agent has no prior knowledge of the effects of its actions on the environment. Reinforcement learning algorithms are related to dynamic programming algorithms frequently used to solve optimization problems

19.what is the use of candidate elimination algorithm?

The CANDIDATE-ELIMINATION algorithm utilizes this general-to-specific ordering to compute the version space (the set of all hypotheses consistent with the training data) by incrementally computing the sets of maximally specific (S) and maximally general (G) hypotheses.

20.what is decision tree learning?

Decision tree learning is a method for approximating discrete-valued target functions, in which the learned function is represented by a decision tree.

 Learned trees can also be re-represented as sets of if-then rules to improve human readability. These learning methods are among the most popular of inductive inference algorithms and have been successfully applied to a broad range of tasks from learning to diagnose medical.

1.How to design a learning system?
DESIGNING A LEARNING SYSTEM In order to illustrate some of the basic design issues and approaches to machine learning, let us consider designing a program to learn to play checkers, with the goal of entering it in the world checkers tournament. We adopt the obvious performance measure: the percent of games it wins in this world tournament.

Choosing the Training Experience:
 The first design choice we face is to choose the type of training experience from which our system will learn. The type of training experience available can have a significant impact on success or failure of the learner. One key attribute is whether the training experience provides direct or indirect feedback regarding the choices made by the performance system. For example, in learning to play checkers, the system might learn from direct training examples consisting of individual checkers board states and the correct move for each. Alternatively, it might have available only indirect information consisting of the move sequences and final outcomes of various games played. In this later case, information about the correctness of specific moves early in the game must be inferred indirectly from the fact that the game was eventually won or lost. Here the learner faces an additional problem of credit assignment, or determining the degree to which each move in the sequence deserves credit or blame for the final outcome. Credit assignment can be a particularly difficult problem because the game can be lost even when early moves are optimal, if these are followed later by poor moves. Hence, learning from direct training feedback is typically easier than learning from indirect feedback. A second important attribute of the training experience is the degree to which the learner controls the sequence of training examples. For example, the learner might rely on the teacher to select informative board states and to provide the correct move for each. Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the teacher for the correct move. Or the learner may have complete control over both the board states and (indirect) training classifications, as it does when it learns by playing against itself with no teacher present. Notice in this last case the learner may choose between experimenting with novel board states that it has not yet considered, or honing its skill by playing minor variations of lines of play it currently finds most promising. Subsequent chapters consider a number of settings for learning, including settings in which training experience is provided by a random process outside the learner's control, settings in which the learner may pose various types of queries to an expert teacher, and settings in which the learner collects training examples by autonomously exploring its environment. A third important attribute of the training experience is how well it represents the distribution of examples over which the final system performance P must be measured. In general, learning is most reliable when the training examples follow a distribution similar to that of future test examples. In our checkers learning scenario, the performance metric P is the percent of games the system wins in the world tournament. If its training experience E consists only of games played against itself, there is an obvious danger that this training experience might not be fully representative of the distribution of situations over which it will later be tested. For example, the learner might never encounter certain crucial board states that are very likely to be played by the human checkers champion. In practice, it is often necessary to learn from a distribution of examples that is somewhat different from those on which the final system will be evaluated (e.g., the world checkers champion might not be interested in teaching the program!). Such situations are problematic because mastery of one distribution of examples will not necessary lead to strong performance over some other distribution. We shall see that most current theory of machine learning rests on the crucial assumption that the distribution of training examples is identical to the distribution of test examples. Despite our need to make this assumption in order to obtain theoretical results, it is important to keep in mind that this assumption must often be violated in practice. To proceed with our design, let us decide that our system will train by playing games against itself. This has the advantage that no external trainer need be present, and it therefore allows the system to generate as much training data as time permits. We now have a fully specified learning task. A checkers learning problem: 0 Task T: playing checkers 0 Performance measure P: percent of games won in the world tournament 0 Training experience E: games played against itself In order to complete the design of the learning system, we must now choose 1. the exact type of knowledge to be,learned 2. a representation for this target knowledge 3. a learning mechanism

Choosing the Target Function

 The next design choice is to determine exactly what type of knowledge will be learned and how this will be used by the performance program. Let us begin with a checkers-playing program that can generate the legal moves from any board state. The program needs only to learn how to choose the best move from among these legal moves. This learning task is representative of a large class of tasks for which the legal moves that define some large search space are known a priori, but for which the best search strategy is not known. Many optimization problems fall into this class, such as the problems of scheduling and controlling manufacturing processes where the available manufacturing steps are well understood, but the best strategy for sequencing them is not.

 Given this setting where we must learn to choose among the legal moves, the most obvious choice for the type of information to be learned is a program, or function, that chooses the best move for any given board state.

 Let us call this function ChooseMove and use the notation ChooseMove : B -+ M to indicate that this function accepts as input any board from the set of legal board states B and produces as output some move from the set of legal moves M.

Throughout our discussion of machine learning we will find it useful to reduce the problem of improving performance P at task T to the problem of learning some particular targetfunction such as ChooseMove. The choice of the target function will therefore be a key design choice. Although ChooseMove is an obvious choice for the target function in our example, this function will turn out to be very difficult to learn given the kind of indirect training experience available to our system. An alternative target functionand one that will turn out to be easier to learn in this setting-is an evaluation function that assigns a numerical score to any given board state.

Let us call this target function V and again use the notation V : B + 8 to denote that V maps any legal board state from the set B to some real value (we use 8 to denote the set of real numbers). We intend for this target function V to assign higher scores to better board states. If the system can successfully learn such a target function V, then it can easily use it to select the best move from any current board position. This can be accomplished by generating the successor board state produced by every legal move, then using V to choose the best successor state and therefore the best legal move. What exactly should be the value of the target function V for any given board state? Of course any evaluation function that assigns higher scores to better board states will do. Nevertheless, we will find it useful to define one particular target function V among the many that produce optimal play.

 As we shall see, this will make it easier to design a training algorithm. Let us therefore define the target value V(b) for an arbitrary board state b in B, as follows: 1. if b is a final board state that is won, then V(b) = 100 2. if b is a final board state that is lost, then V(b) = -100 3. if b is a final board state that is drawn, then V(b) = 0 4. if b is a not a final state in the game, then V(b) = V(bl), where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game (assuming the opponent plays optimally, as well). While this recursive definition specifies a value of V(b) for every board state b, this definition is not usable by our checkers player because it is not efficiently computable.

Choosing a Representation for the Target Function

 Now that we have specified the ideal target function V, we must choose a representation that the learning program will use to describe the function c that it will learn. As with earlier design choices, we again have many options. We could, for example, allow the program to represent using a large table with a distinct entry specifying the value for each distinct board state. Or we could allow it to represent using a collection of rules that match against features of the board state, or a quadratic polynomial function of predefined board features, or an artificial neural network. In general, this choice of representation involves a crucial tradeoff. On one hand, we wish to pick a very expressive representation to allow representing as close an approximation as possible to the ideal target function V. On the other hand, the more expressive the representation, the more training data the program will require in order to choose among the alternative hypotheses it can represent. To keep the discussion brief, let us choose a simple representation: for any given board state, the function c will be calculated as a linear combination of the following board features: 0 xl: the number of black pieces on the board x2: the number of red pieces on the board 0 xs: the number of black kings on the board 0 x4: the number of red kings on the board CHAPTER I INTRODUCTION 9 x5: the number of black pieces threatened by red (i.e., which can be captured on red's next turn) X6: the number of red pieces threatened by black Thus, our learning program will represent c(b) as a linear function of the form where wo through W6 are numerical coefficients, or weights, to be chosen by the learning algorithm. Learned values for the weights wl through W6 will determine the relative importance of the various board features in determining the value of the board, whereas the weight wo will provide an additive constant to the board value. To summarize our design choices thus far, we have elaborated the original formulation of the learning problem by choosing a type of training experience, a target function to be learned, and a representation for this target function. Our elaborated learning task is now Partial design of a checkers learning program: Task T: playing checkers Performance measure P: percent of games won in the world tournament Training experience E: games played against itself Targetfunction: V:Board + 8 Targetfunction representation
The first three items above correspond to the specification of the learning task, whereas the final two items constitute design choices for the implementation of the learning program. Notice the net effect of this set of design choices is to reduce the problem of learning a checkers strategy to the problem of learning values for the coefficients wo through w6 in the target function representation
Choosing a Function Approximation Algorithm
In order to learn the target function f we require a set of training examples, each describing a specific board state b and the training value Vtrain(b) for b.
 In other words, each training example is an ordered pair of the form (b, V',,,i,(b)). For instance, the following training example describes a board state b in which black has won the game (note x2 = 0 indicates that red has no remaining pieces) and for which the target function value VZrain(b) is therefore +100.
MACHINE LEARNING Below we describe a procedure that first derives such training examples from the indirect training experience available to the learner, then adjusts the weights wi to best fit these training examples.
ESTIMATING TRAINING VALUES Recall that according to our formulation of the learning problem, the only training information available to our learner is whether the game was eventually won or lost. On the other hand, we require training examples that assign specific scores to specific board states.
While it is easy to assign a value to board states that correspond to the end of the game, it is less obvious how to assign training values to the more numerous intermediate board states that occur before the game's end.
Of course the fact that the game was eventually won or lost does not necessarily indicate that every board state along the game path was necessarily good or bad. For example, even if the program loses the game, it may still be the case that board states occurring early in the game should be rated very highly and that the cause of the loss was a subsequent poor move.
Despite the ambiguity inherent in estimating training values for intermediate board states, one simple approach has been found to be surprisingly successful. This approach is to assign the training value of Krain(b) for any intermediate board state b to be ?(~uccessor(b)), where ? is the learner's current approximation to V and where Successor(b) denotes the next board state following b for which it is again the program's turn to move (i.e., the board state following the program's move and the opponent's response). This rule for estimating training values can be summarized as ~ulk for estimating training values. V,,,i. (b) c c(~uccessor(b)) While it may seem strange to use the current version of f to estimate training values that will be used to refine this very same function, notice that we are using estimates of the value of the Successor(b) to estimate the value of board state b. Intuitively, we can see this will make sense if ? tends to be more accurate for board states closer to game's end. In fact, under certain conditions (discussed in Chapter 13) the approach of iteratively estimating training values based on estimates of successor state values can be proven to converge toward perfect estimates of Vtrain. 1.2.4.2 ADJUSTING THE WEIGHTS All that remains is to specify the learning algorithm for choosing the weights wi to^ best fit the set of training examples {(b, Vtrain(b))}. As a first step we must define what we mean by the bestfit to the training data. One common approach is to define the best hypothesis, or set of weights, as that which minimizes the squarg error E between the training values and the values predicted by the hypothesis V. Thus, we seek the weights, or equivalently the c, that minimize E for the observed training examples. Chapter 6 discusses settings in which minimizing the sum of squared errors is equivalent to finding the most probable hypothesis given the observed training data. Several algorithms are known for finding weights of a linear function that minimize E defined in this way. In our case, we require an algorithm that will incrementally refine the weights as new training examples become available and that will be robust to errors in these estimated training values. One such algorithm is called the least mean squares, or LMS training rule. For each observed training example it adjusts the weights a small amount in the direction that reduces the error on this training example. As discussed in Chapter 4, this algorithm can be viewed as performing a stochastic gradient-descent search through the space of possible hypotheses (weight values) to minimize the squared enor E. The LMS algorithm is defined as follows: LMS weight update rule. For each training example (b, Kmin(b)) Use the current weights to calculate ?(b) For each weight mi, update it as Here q is a small constant (e.g., 0.1) that moderates the size of the weight update. To get an intuitive understanding for why this weight update rule works, notice that when the error (Vtrain(b) - c(b)) is zero, no weights are changed. When (V,,ain(b) - e(b)) is positive (i.e., when f(b) is too low), then each weight is increased in proportion to the value of its corresponding feature. This will raise the value of ?(b), reducing the error. Notice that if the value of some feature xi is zero, then its weight is not altered regardless of the error, so that the only weights updated are those whose features actually occur on the training example board. Surprisingly, in certain settings this simple weight-tuning method can be proven to converge to the least squared error approximation to the &,in values (as discussed in Chapter
The Final Design
 The final design of our checkers learning system can be naturally described by four distinct program modules that represent the central components in many learning systems. These four modules, summarized in Figure 1.1, are as follows: 0 The Performance System is the module that must solve the given performance task, in this case playing checkers, by using the learned target function(s). It takes an instance of a new problem (new game) as input and produces a trace of its solution (game history) as output. In our case, the 12 MACHINE LEARNING Experiment Generator New problem Hypothesis (initial game board) f VJ Performance Generalizer System Solution tract Training examples (game history) /. I Critic FIGURE 1.1 Final design of the checkers learning program. strategy used by the Performance System to select its next move at each step is determined by the learned p evaluation function. Therefore, we expect its performance to improve as this evaluation function becomes increasingly accurate. e The Critic takes as input the history or trace of the game and produces as output a set of training examples of the target function. As shown in the diagram, each training example in this case corresponds to some game state in the trace, along with an estimate Vtrai, of the target function value for this example. In our example, the Critic corresponds to the training rule given by Equation (1.1). The Generalizer takes as input the training examples and produces an output

2.Explain about CADET BASED SYSTEM?
CASE-BASED REASONING Instance-based methods such as k-NEAREST NEIGHBOR and locally weighted regression share three key properties.
 First, they are lazy learning methods in that they defer the decision of how to generalize beyond the training data until a new query instance is observed.
Second, they classify new query instances by analyzing similar instances while ignoring instances that are very different from the query.
Third, they represent instances as real-valued points in an n-dimensional Euclidean space. Case-based reasoning (CBR) is a learning paradigm based on the first two of these principles, but not the third. In CBR, instances are typica:'y represented using more rich symbolic descriptions, and the methods used to retrieve similar instances are correspondingly more elaborate.
CBR has been applied to problems such as conceptual design of mechanical devices based on a stored library of previous designs (Sycara et al. 1992), reasoning about new legal cases based on previous rulings (Ashley 1990), and solving planning and scheduling problems by reusing and combining portions of previous solutions to similar problems (Veloso 1992). Let us consider a prototypical example of a case-based reasoning system to ground our discussion.
The CADET system (Sycara et al. 1992) employs case based reasoning to assist in the conceptual design of simple mechanical devices such as water faucets. It uses a library containing approximately 75 previous designs and design fragments to suggest conceptual designs to meet the specifications of new design problems. Each instance stored in memory (e.g., a water pipe) is represented by describing both its structure and its qualitative function.
 New design problems are then presented by specifying the desired function and requesting the corresponding structure.
The top half of the figure shows the description of a typical stored case called a T-junction pipe. Its function is represented in terms of the qualitative relationships among the waterflow levels and temperatures at its inputs and outputs. In the functional description at its right, an arrow with a "+" label indicates that the variable at the arrowhead increases with the variable at its tail.
 For example, the output waterflow Q3 increases with increasing input waterflow Ql. Similarly, A stored case: T-junction pipe Structure: QIJT T = temperature 'L Q = watertlow r Q3J5 Qz4 A problem specification: Water faucet Structure: Function: Function: FIGURE 8.3 A stored case and a new problem. The top half of the figure describes a typical design fragment in the case library of CADET. The function is represented by the graph of qualitative dependencies among the T-junction variables (described in the text). The bottom half of the figure shows a typical design problem. a "-" label indicates that the variable at the head decreases with the variable at the tail. The bottom half of this figure depicts a new design problem described by its desired function.
 This particular function describes the required behavior of one type of water faucet. Here Q, refers to the flow of cold water into the faucet, Qh to the input flow of hot water, and Q, to the single mixed flow out of the faucet. Similarly, T,, Th, and T, refer to the temperatures of the cold water, hot water, and mixed water respectively.
The variable C, denotes the control signal for temperature that is input to the faucet, and Cf denotes the control signal for waterflow. Note the description of the desired function specifies that these controls C, and Cf are to influence the water flows Q, and Qh, thereby indirectly influencing the faucet output flow Q, and temperature T,.
Given this functional specification for the new design problem, CADET searches its library for stored cases whose functional descriptions match the design problem.
 If an exact match is found, indicating that some stored case implements exactly the desired function, then this case can be returned as a suggested solution to the design problem. If no exact match occurs, CADET may find cases that match various subgraphs of the desired functional specification. In Figure 8.3, for example, the T-junction function matches a subgraph of the water faucet function graph.
More generally, CADET searches for subgraph isomorphisms between the two function graphs, so that parts of a case can be found to match parts of the design specification. Furthermore, the system may elaborate the original function specification graph in order to create functionally equivalent graphs that may match still more cases.
 It uses general knowledge about physical influences to create these elaborated function graphs. For example, it uses a rewrite rule that allows it to rewrite the influence This rewrite rule can be interpreted as stating that if B must increase with A, then it is sufficient to find some other quantity x such that B increases with x, and x increases with A.
Here x is a universally quantified variable whose value is bound when matching the function graph against the case library. In fact, the function graph for the faucet shown in Figure 8.3 is an elaboration of the original - functional specification produced by applying such rewrite rules.
 By retrieving multiple cases that match different subgraphs, the entire design can sometimes be pieced together. In general, the process of producing a final solution from multiple retrieved cases can be very complex.
 It may require designing portions of the system from first principles, in addition to merging retrieved portions from stored cases. It may also require backtracking on earlier choices of design subgoals and, therefore, rejecting cases that were previously retrieved. CADET has very limited capabilities for combining and adapting multiple retrieved cases to form the final design and relies heavily on the user for this adaptation stage of the process. As described by Sycara et al. (1992), CADET is CHAPTER 8 INSTANCE-BASED LEARMNG 243 a research prototype system intended to explore the potential role of case-based reasoning in conceptual design. It does not have the range of analysis algorithms needed to refine these abstract conceptual designs into final designs. It is instructive to examine the correspondence between the problem setting of CADET and the general setting for instance-based methods such as k-NEAREST NEIGHBOR. In CADET each stored training example describes a function graph along with the structure that implements it. New queries correspond to new function graphs. Thus, we can map the CADET problem into our standard notation by defining the space of instances X to be the space of all function graphs. The target function f maps function graphs to the structures that implement them. Each stored training example (x, f (x)) is a pair that describes some function graph x and the structure f (x) that implements x.
The system must learn from the training example cases to output the structure f (x,) that successfully implements the input function graph query x,.
The above sketch of the CADET system illustrates several generic properties of case-based reasoning systems that distinguish them from approaches such as k-NEAREST NEIGHBOR. 0 Instances or cases may be represented by rich symbolic descriptions, such as the function graphs used in CADET. This may require a similarity metric different from Euclidean distance, such as the size of the largest shared subgraph between two function graphs. 0 Multiple retrieved cases may be combined to form the solution to the new problem.
 This is similar to the k-NEAREST NEIGHBOR approach, in that multiple similar cases are used to construct a response for the new query. However, the process for combining these multiple retrieved cases can be very different, relying on knowledge-based reasoning rather than statistical methods. 0 There may be a tight coupling between case retrieval, knowledge-based reasoning, and problem solving. One simple example of this is found in CADET, which uses generic knowledge about influences to rewrite function graphs during its attempt to find matching cases. Other systems have been developed that more fully integrate case-based reasoning into general search based problem-

3.Explain about Decision tree learning?

Decision tree learning is one of the most widely used and practical methods for inductive inference
• It is a method for approximating discrete-valued functions that is robust to noisy data and capable of learning disjunctive expressions
• These decision tree learning methods search a completely expressive hypothesis space and thus avoid the difficulties of restricted hypothesis spaces
• Decision tree learning is a method for approximating discrete-valued target functions, in which the learned function is represented by a decision tree – If-then rule – most popular inductive inference algorithms
• Decision trees classify instances by sorting them down the tree from the root to some leaf node, which provides the classification of the instance. Each node in the tree specifies a test of some attribute of the instance, and each branch descending from that node corresponds to one of the possible values for this attribute.
DECISION TREE REPRESENTATION This decision tree classifies Saturday mornings according to whether they are suitable for playing tennis. (Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)In decision tree structures, leaves represent class labels, nodes represent the attributes and branches represent conjunctions of features.
 Decision trees where the target variable can take continuous values (typically real numbers) are called regression trees. There are many specific decision-tree algorithms. Notable ones include: ID3 (Iterative Dichotomiser 3) C4.5 (successor of ID3) CART (Classification And Regression Tree) CHAID (CHi-squared Automatic Interaction Detector). Performs multi-level splits when computing classification trees. MARS: extends decision trees to handle numerical data better.
 Conditional Inference Trees. Statistics-based approach that uses non-parametric tests as splitting criteria, corrected for multiple testing to avoid overfitting. This approach results in unbiased predictor selection and does not require pruning Decision trees represent a disjunction of conjunctions of constraints on the attribute values of instancesAdvantages Of Decision Tree
How to represent the Neural Networks?

A prototypical example of ANN learning is ALVINN((Autonomous Land Vehicle In a Neural Network)is a perception system, which uses a learned ANN to steer an autonomous vehicle driving at normal speeds on public highways.

(Input: The input to the neural network is a 30 x 32 grid of pixel intensities obtained from a forward-pointed camera mounted on the vehicle.

(Output: The network output is the direction in which the vehicle is steered1.2. Neural Network Representations (Continued) 18-07-2020 12

(The ANN is trained to mimic the observed steering commands of a human driving the vehicle for approximately 5 minutes. ALVINN has used its learned networks to successfully drive at speeds up to 70 miles per hour and for distances of 90 miles on public highways.
(Figures in the next slide illustrates the neural network representation used in one version of the ALVINN system, and illustrates the kind of representation typical of many ANN systems.1.2. Neural Network Representations (Continued) 18-07-2020 13 Figure 1 Figure 2 Figure 31.2. Neural Network Representations (Continued)
(The ALVINN system uses BACKPROPAGATION to learn to steer an autonomous vehicle (photo at top) driving at speeds up to 70 miles per hour.
 (The diagram on the left (figure 1) shows how the image of a forward-mounted camera is mapped to 960 neural network inputs, which are fed forward to 4 hidden units, connected to 30 output units.
 (The figure 3 shows 30 x 32 weights into the hidden unit are displayed in the large matrix, with white blocks indicating positive and black indicating negative weights.
(As can be seen from these output weights, activation of this particular hidden unit encourages a turn toward the left.1.2. Neural Network Representations (Continued) 18-07-2020 15
(Each ANN is composed of a collection of perceptrons grouped in layers. A typical structure is shown in below figure. Note the three layers: input, intermediate (called the hidden layer) and output. Several hidden layers can be placed between the input and output layers

4.Explain perceptron training rule
let us begin by understanding how to learn the weights for a single perceptron.
(They are important to ANNs because they provide the basis for learning networks of many units.
(Several algorithms are known to solve this learning problem. Here we consider two: (The Perceptron rule
(The Perceptron Rule: (
 One way to learn an acceptable weight vector is to begin with random weights, then iteratively apply the perceptron to each training example, modifying the perceptron weights whenever it misclassifies an example.
 (This process is repeated until the perceptron classifies all training examples correctly.
(Weights are modified at each step according to the perceptron training rule , which revises the weight wi associated with input xi according to the rule.
In the above equation: t (is the target output for the current training example o (is the output generated by the perceptron and ((is a positive constant called the learning rate (The role of the learning rate is to moderate the degree to which weights are changed at each step.
 (If t = -1 and o = 1, then weights associated with positive xi will be decreased rather than increased.
(If t=1 and o=-1 , then weights associated with positive xi will be increased rather than decreased.
 (Example: if xi = 0.8, (= 0.1, t = 1, and o = - 1, then the weight update will be = O.1(1 - (-1))0.8 = 0.16. (the above learning procedure can be proven to converge within a finite number of applications of the perceptron training rule to a weight vector that correctly classifies all training examples, provided the training examples are linearly separable and provided a sufficiently small n is used. If the data are not linearly separable, convergence is not assured.
• Gradient Descent and the Delta Rule: (The perceptron rule finds a successful weight vector when the training examples are linearly separable, it can fail to converge if the examples are not linearly separable.
(A second training rule, called the delta rule, is designed to overcome this difficulty.
(The key idea of delta rule is to use gradient descent to search the space of possible weight vector to find the weights that best fit the training examples.
 (This rule is important because gradient descent provides the basis for the BACKPROPAGATION algorithm, it can serve as the basis for learning algorithms that must search through hypothesis spaces containing many different types of continuously parameterized hypotheses.
(The delta training rule is best understood by considering the task of training an un thresholded perceptron; that is, a linear unit for which the output o is given by
(In order to derive a weight learning rule for linear units, let us begin by specifying a measure for the training error of a hypothesis (weight vector), relative to the training examples.

ESSAY QUESTIONS

1. What is meant by Machine learning? What is its need to today society? Explain successful applications of Machine learning?

2. Illustrate general to specific ordering of hypothesis in concept learning?

3. Explain the key property of FIND – S ALGORITHM for concept learning with necessary example?

4. Present the basic ID3 algorithm for learning decision trees and explain its operation in detail.

5. Discuss the representational power of a perceptron.

6. Explain the gradient descent algorithm for training linear unit. Implement stochastic approximation to this.

7. Explain the features of Bayesian learning methods.

8. Explain Brute Force learning algorithm with an example.

9. What are the applications of probably approximately correct model?Discuss in detail.

10.Explain K Nearest Neighbors algorithm for classification.

11.Discuss the significance of locally weighted regression.

12.Explain how CADET system employs case based reasoning to assist in the conceptual design of simple mechanical devices

13. Consider the two strings as initial population for genetic algorithm and generate all possible off springs using various operators

String 1: 11101001000

String 2: 00001010101

14. What are the main properties of PROLOG-EBG algorithm? Is it deductive of inductive? Justify your answer

15. Write KBANN algorithm to explain usage of prior knowledge to reduce complexity.

16. Describe PAC Hypothesis

17.Describe Mistake bound model of learning

18.What is meant by explanation based learning?

19. Define the following.

 1)Inductive learning hypothesis

 2)consist hypothesis

 3)version space for play tennis problem

20.Discuss about Inductive bias?

21. Define Neural Network learning?what are the problems in Nueral Network learning?

22.Explain in brief about Back propagation algorithm.

23. Define sampling theory. What are the basics of sampling theory?

24.Explain Bayesian belief network and conditional independence with example.

25. Explain how hidden markov model is used to perform pattern classification?

26. Explain in brief about Radial basis function?

27. what is genetic programming ?How can you represent Genetic programs

28.Explain about lazy and Eagar learning?

