UNIT-I
1) List out the various steps in software development ?
Ans:
· Programmers use the software development method for solving problems

· It consists of the following 6 phases
 1)Requirements

 2) Analysis

3) Design

4) Coding

5) Testing

6) Maintenance

1) Requirements
· Information about the problem must be stated clearly and unambiguously

· Main objective of this phase is to eliminate unimportant aspects and identify the root problem

2) Analysis
· It involves identifying the problem inputs, outputs, that the program must produce

· It also determines the required format in which results should be displayed

3) Design
· It involves designing algorithms, flowcharts (or) GUI’s (Graphical User Interfaces)

· Designing the ‘algorithm’ is to develop a list of steps called algorithm to solve the problem and then verify that the algorithm solves the problem intended.

· “Top – down design” is followed i.e. list the major steps (or) sub problems that need to be solved

· “Flow charts” are used to get the pictorial representation of the algorithm.

· Algorithm for a programming problem consists of at least the following sub problems

1. Get the data

2. Perform the computations

3. Display the results

4) Coding / Implementation
· This step involves writing algorithm as a program by selecting any one of the high – level languages that is suitable for the problem.

· Each step of the algorithm is converted into one (or) more statements in a programming language.

5) Testing
· Checking / verifying whether the completed program works as desired is called “ Testing”

· Running the program several times using different sets of data verifies whether a program works correctly for every situation provided in the algorithm.
· After testing, the program must be free from the following errors.

a) Syntax errors

b) Logical errors

c) Run-time errors

6) Maintenance
· It involves modifying a program to remove previously undetected errors and to keep it up-to- date as government regulations (or) company polices change.

· Many organizations maintains a program for some period of time i.e. 5 years

2** **Differentiate between

i. Compiler and interpreter.

ii. Application software and system software

iii. Break , continue and goto statements

iv. While and do while

v. if-else-if ladder and switch statement?
 Ans:

Compiler and interpreter
	Compiler
	Interpreter

	Compiler takes entire program as input
	Interpreter takes Single instruction as input

	Intermediate object code is generated
	No intermediate object code is generated

	Conditional control statements are executes faster
	Conditional control statements are Executes slower

	Memory Requirement is more because intermediate object is generated which should be saved.
	Memory requirement is less because no object code is created.

	Program need not be compiled every time
	Every time higher level program is converted into lower level program

	Errors are displayed after entire program is checked
	Error is displayed for every instruction interpreted

	Compiled source run faster but takes more time for debugging(finding errors)
	Interpreted code run slower but easy to find and fix the error.

	Compilation time is more
	Compilation time is less

	Compiler takes complete high level language code and convert it into machine readable format
	Interpreter takes single instruction at a time,convert it into machine readable format and executes that single instruction. It will stop/terminate the execution if it finds any error.

	Example: C compiler
	Example: BASIC

 ii) Application software and system software
	Application Software
	System Software

	Definition Application software is computer software designed to help the user to perform specific tasks.
	Definition System software is computer software designed to operate the computer hardware and to provide a platform for running application software.

	Purpose It is specific purpose software.
	Purpose It is general-purpose software.

	Environment Application Software performs in a environment which created by System/Operating System
	Environment System Software Create his own environment to run itself and run other application.

	Execution Time It executes as and when required.
	Execution Time It executes all the time in computer.

	Essentiality Application is not essential for a computer.
	Essentiality System software is essential for a computer

	The number of application software is much more than system software.
	The number of system software is less than application software.

	application software is installed according to the requirements of the user.
	System software gets installed when the operating system is installed on the computer

	application software includes media players, word processors, and spreadsheet programs
	System software includes programs such as compilers, debuggers, drivers, assembler

	users interact with application software while doing different activities.
	users do not interact with system software as it works in the background

	application software cannot run without the presence of the system software.
	System software can run independently of the application software

ii) Break , continue and goto statements

1) break

· It is a keyword used to terminate the loop (or) exit from the block

· The control jumps to next statement after the loop (or) block

· ‘break is used with for, while, do-while and switch statement

· When break is used in nested loops then only the innermost loop is terminated

Syntax

{
Stmt1;

Stmt2;

[image: image2.png][image: image3.emf]

break;

Stmt3;

Stmt4;

}

2) continue

· It is a keyword used for continuing the next iteration of the loop

· It skips the statements after the continue statement

· It is used with for, while and do-while

Syntax

{

Stmt1;

Stmt2;

continue;

Stmt3;

Stmt4;

}

3) goto

· It is used to after the normal sequence of program execution by transferring the control to some other part of program

Syntax

goto label;

label : stmt

Program

Iv) While and do while

1) while loop // pre condition check or entry level condition checking

2) do-while loop //post condition check or exit level condition checking

· Intialization is done before the loop

· Loop continues as long as the condition is true

· Incriminations and decrementation part is done within the loop

· 3) do-while loop

· Syntax

3****What is an algorithm? List and explain the properties of algorithm.
ALGORITHM:
· It is a step – by – step procedure for solving a problem

· If algorithm is written in English like sentences then it is called as ‘PSEUDO CODE’

Properties of an Algorithm
An algorithm must posses the following 5 properties. They are

1. Input

2. Output

3. Finiteness

4. Definitenes
 5. Effectiveness

 1.Input : An algorithm must have zero (or) more number of inputs

2.Output: Algorithm must produce one (or) more number of outputs

3.Finiteness : An algorithm must terminate in countable number of steps

4.Definiteness: Each step of the algorithm must be stated clearly

5.Effectiveness: Each step of the algorithm must be easily convertible into program statements

Example
Algorithm for finding the average of 3 numbers

1. start

2. Read 3 numbers a,b,c

3. Compute sum = a+b+c
4. compute avg = sum/3

5. Print avg value

5.Stop
 4)List the basic data types, their sizes and range of values supported by ‘C’language?
Data Types

· Data type specifies the set of values and the type of data that can be stored in a variable.

· They allow the programmer to select the type appropriate to the needs of application.

Types : ANSI supports 3 class of data types namely

1) Primary data type/fundamental data type/ Basic data type

2) Derived data type

3) User-defined data type
4) Figure:-
1. Primary data types

 Void:

· designated by th keyword ' void '. The void type have no values.

· It is used to specify the type of a functions.The type of a functions will be void if it not returning any value to the calling function.

· It is used to designate that a function has no parameters as in main function.

· It is also used to define a pointer to generic data.

 Integral type:

 Integral data types are used to store whole numbers and characters

 C have 3 integral types namely

 i)Boolean

 ii)Character

 iii) Integer

 i) Boolean:

 This is named after French mathematician "George Boole".

 It can represent two values namely true and false.It can be in memory as 0(false) and 1(true).

 ii) Character data type :

 A single character can be defined as a character (Char)type data.

 This data type is used to store character

· These characters are internally stored as integers

· Each character has an equivalent ASCII value

· eg: ‘A’ has ASCII value 65,'B' has ASCII value 66 and so on,'a' has ASCII value 97 and so on.
	Character data type

	Type
	Size (in bytes)
	Range
	Control string

	Char (or) signed char
	1
	- 128 to +127
	%c

	Unsigned char
	1
	0 to 255
	%c

 iii) Intege An integer type is a number without a fractional part or a whole number In order to provide.
 iii) Integer:

 An integer type is number without a fractional part or a whole number.

 In order to provide some control over the range of numbers and storage spaces C supports 4 different size of integers.

· short int, int and long int are in both signed and unsigned forms

	Integer Data type

	Type
	size (in bytes)
	Range
	Control string

	Short int (or) signed short int
	1
	-128 to 127
	% h

	Unsigned short int
	1
	0 to 255
	%uh

	int (or) signed int
	2
	-32768 to 32767
	% d or %i

	unsigned int
	2
	0 to 65535
	% u

	Long int (or) signed long int
	4
	-2147483648 to 2147483647
	%ld

	Unsigned long int
	4
	0 to 4294967295
	%lu

	long long int
	8
	
	

function sizeof (datatype) gives the size of the datatype in bytes.

 c follows the followings relation ship

	sizeof(short) < sizeof(int) < sizeof(long int) < sizeof(long long int)

 Floating – point Data types

 'C' standard recognizes 3 floating point types

 i) Real

 ii)Imaginary

 iii) Complex

 i) Real:

· It is used to store real numbers (i.e., decimal point numbers).

· C has 3 different sizes of real types

· For 6 digits of accuracy, ‘float’ is used.

· For 12 digits of accuracy, ‘double' is used.

· For more than 12 digits of accuracy, ‘long double’ is used..

	Floating point data type

	Type
	Size (in bytes)
	Range
	Control string

	float
	4
	3.4 E – 38 to 3.4 E + 38
	%f

	double
	8
	1.7 E – 308 to 1.7 E +308
	%lf

	long double
	10
	3.4 E – 4932 to 1.1 E +4932
	%Lf

among the real type

	sizeof (float) < sizeof (double) < sizeof (long double)

 ii) Imaginary:

 It is real number multiplied by root of -1

 It has 3 different size of imaginary types

 a) float imaginary

 b) double imaginary

 c) long double imaginary

iii) Complex type

 --It is combination of real and an imaginary number

 -- It have 3 different sizes

 a)float complex

 b) double complex

 c) long double complex

5).What is a flow chart? Draw a flowchart for

(a) **finding maximum of given three integers?

(b) **find out if a given number is a prime

(c) all the factors of a given positive integer

 (d) for finding the sum of ‘n’ numbers starting from 1?

Diagrammatic or Pictorial representation of an algorithm is called flow chart

Advantages of flow chart
· It is very easy to understand because the reader follows the process quickly from the flowchart instead of going through the text.

· It is the best way of representing the sequence of steps in an algorithm

· It gives a clear idea about the problem

· Various symbols are used for representing different operations

· Arrows are used for connecting the symbols and show the flow of execution

FLOWCHART:
 Refer to Class work for flow chart.
6.****Explain the only ternary operator available in ‘C’ with illustrative example?

 A ternary operator pair “ ? : ” is used to construct conditional expressions.

 Syntax:

 where exp1,exp2,exp3 are expressions .

 -->If exp1 is true,then exp2 is evaluated.

 -->If exp1 is false,the exp3 is evaluated.

Note:only one expression either exp2 or exp3 is evaluated.

 Example:a=10

 b=5

 x=(a>b)?a:b;

x is assign with 'a' value since the exp1 is true.

7.What is an identifier? What are the naming rules for identifiers in C?

 Identifiers:

 Identifiers refers to the name of variables ,functions and arrays.

 This are used defined names.

 ANSI C allows names upto 31 characters.

Identifiers refer to the names of variables, functions and arrays. These are user defined names and each identified object in the computer is stored at a unique address.

Naming rules for identifiers(variables, functions, arrays) :

1) First character must be alphabetic character or underscore.

2)Must consist of only letters, digits or underscore.

3)First 63 charactes of an identifier are significant. But first eight characters are treated as significant by many compilers

4)Cannot use a keyword for naming identifiers.

5)Must not contain white space.

Example:

Valid name

Invalid names

 a

$sum

 student_name

2names

 _anyname

sum-salary

 int_min

int

_float

stdnt nbr

C is case sensitive. This means that even though two identifiers are spelled the same, if the case of each corresponding letter does not match, C thinks of them as different names. Under this rule num, Num, NUM are three different identifiers

 8.Explain different types of coding constants in a C?

Coding Constant :-

 There are 3 different waus we code constants in our program namely,

 i) Literal constant

 ii) Defined constant

 iii) memory constant

i)Literal constant:

 A literal is a unnamed constant used to specify data.

 Literal are coded as part of a statement Eg: a=b+5;

 literal ' 5 ' is used in above statement.

ii) Defined Constants:

 The defined cammands are usually placed at the begining of the program,although they can be placed anywhere in program.

 Eg:# define year 2012

 In the above example year may be changing by placing it at the beginning of program,we can find and change them easily.

 This action is just like the search and replace command in text editor.The preprocess just make the substitution without evaluating.

iii)Memory constant:

 It uses a 'c' type qualifier, const to indicate data cannot be changed.

	Syntax: const type identifier = value;

 Eg: const float PI=3.1415;
 type qualifiers comes first.There must be an initializer.Since,we have declared PI as a constant we cannot change it.

9.Explain the structure of a C program?

General form of a ‘C’ program

/* documentation section */

preprocessor directives

global declaration

main ()

 {

local declaration

executable statements

 }

return-type function name (argument list)

{

local declaration

executable statements

}

 10****Differentiate between if-else-if ladder and switch statement?

. Switch statement

Difference between switch case and else if ladder:

Note:Before Reading this answer ,read about Switch case statement and Else if ladder statements

Answer:
1. In else if ladder, the control goes through the every else if statement until it finds true value of the statement or it comes to the end of the else if ladder. In case of switch case, as per the value of the switch, the control jumps to the corresponding case.

2. The switch case is more compact than lot of nested else if. So, switch is considered to be more readable.

3. The use of break statement in switch is essential but there is no need of use of break in else if ladder.

4. The variable data type that can be used in expression of switch is integer only where as in else if ladder accepts integer type as well as character.

5. Another difference between switch case and else if ladder is that the switch statement is considered to be less flexible than the else if ladder, because it allows only testing of a single expression against a list of discrete values.

6. Since the compiler is capable of optimizing the switch statement, they are generally considered to be more efficient. Each case in switch statement is independent of the previous one. In case of else if ladder, the code needs to be processed in the order determined by the programmer.

7. Switch case statement work on the basis of equality operator whereas else if ladder works on the basis of true false(zero/non-zero) basis.

11.** **What is the type conversion /type casting .

Type Conversions

Converting one data type into another is the concept of type conversion

2 types

1. Implicit type conversion

2. Explicit type conversion

· Implicit type conversion is automatically done by the compiler by converting smaller data type into a larger data type.

Converting one data type into another is the concept of type conversion

2 types

1. Implicit type conversion

2. Explicit type conversion

 I) Implicit type conversion

‘C ‘ compiler converts one data type to another automatically so that expression can be evaluated without losing any significance. This automatic conversion is known as “implicit type conversion” .

· During the evaluation , ‘C’ uses a rule that in all expressions except in assignment, any implicit type conversion are made from lower size type to higher size type
12. ****what is Precedence and Associatively*****

Precedence:
 The order in which the operators in a complex expression are evaluated is determined by a set of priorities known as precedence.

Associativity :

 Associativity is used to determine the order in which operators with same precedence are evaluated in complex expression

 Associativity can be i) Left to Right . ii) Right to left .

 i)Left to Right associativity evaluates the expression by starting on left and moving to the right side of expression.

 ii) Right to Left associativity evaluates the expression by starting on right and moving to the left side of expression.

Side effect:

 A side effect is an action that results from the evaluation of a expression..

 Eg: int x=3;

 x = x+ 4;

 here initial value of x is 3 and the value of the expression on right side of assignment is 7 (ie 3+4).so the final value of x is 7 this is side effect. ‘C ‘ language extends the precedence to 15 levels

13) ****Explain the functions of the following:

 i) Preprocessor

 ii) Compiler

 iii)Linker.
 Ans)
 Preprocessor directive must start with ‘#’ (hash) symbol.

· The preprocessor cammands comes at the begging of the program.

· It consists of a) link section

 b) Definition Section

· The link section provides instructions to the compiler to link functions from the system library

eg : #include < stdio.h>

· The definition section defines all symbolic constants

eg : #define PI 3.141
compiler:

	Compiler takes entire program as input

	Intermediate object code is generated

	Conditional control statements are executes faster

	Memory Requirement is more because intermediate object is generated which should be saved.

	Program need not be compiled every time

	Errors are displayed after entire program is checked

	Compiled source run faster but takes more time for debugging(finding errors)

	Compilation time is more

	Compiler takes complete high level language code and convert it into machine readable format

	Example: C compiler

Linker: Linker is software that takes the object files and linkup with the various needed library files and creates a single executable file called as “.EXE” file
 UNIT-II

1) ****What is the need for user-defined functions?

Ans:

user defined functions

These functions must be defined by the programmer (or) user

Programmer has to write the coding for such functions and test them properly before using them

The syntax of the function is also given by the user and therefore need not include any header files.

In order to make a user-defined functions,we need to do following 3 steps

 i) Function Declaration or Function prototype

 ii) Function Call

 iii) Function Definition or Function Implementation.

 i) Function Declaration or Function prototype

 proto type declaration can be done in two places of the program namely

 a) Global prototype---declared above all functions and available/accessible for all functions in program.

 b) Local prototype---declared with in main function defination.

 general formate:

	 return_type function_name(parameter_list);

 NOTE: Parameters that are used in the function declaration are called as "Formal Parameters".

 If no formal parameters are needed the list is written as void.

· A function must follow the same rules of formation as other variables name in ‘C’

· A function name must not duplicate library routine names (or) predefined function names.

 Example1: int sum (int m,int n);

 In the above example use of parameters names is optional i.e we can declare the same function as :- int sum(int , int);

 Example2: void function_name(void);

 The prototype of function does not take any parameters and does not return any value.

 ii) Function Call:
 general formate

	 function_name(parameter_list);

 Note: The parameters in the function call are called as "Actual Parameters".

 The actual parameters must match with formal parameters in function declaration in type,order and number.

 The function call which returns some value can be used in expression,whereas a function call which does not return any value can't be used in the expression.

 The function call is a postfix expression with function name as operand and () with actual parameters as operators.

 Example : sum(10,5);

 multi(m,n);

 multi(expression1,expression2);

 iii) Function Definition or Function Implementation:-

 It contains the code for the function. It has two parts,namely function header and function body.

· The first line in the function definition is called function header.

general formate:

	
	return_type function_name(parameter_list)
	

	 {

 local variable declaration;

 statements;

 return statement;

 }

 statement can be of two type namely,

 return;// if function is not returning any values

 return(expression);//if function is returning a values.

A called function can only return one value per call

The return types are void, int float, char and double.

If a function is not returning any value then its return type is ‘void’.

2)****What is recursion?

Recursive Functions

· Recursion is a repetitive process in which a function calls itself.

A very simple example of recursion is presented below:

Eg 1:

 #include<stdio.h>

 void main()

 {

 printf(" \n I am in main function");

 main();

 }

output:

 I am in main function

 I am in main function

 I am in main function

 I am in main function

3)What are the different ways in which 1-dimensional arrays can be declared and
initialized?

Ans:

1. one – dimensional arrays

A list of items can be given one variable name using only one subscript and such a variable is called a one-dimensional array.

Declaration of one-dimensional arrays

Like any other variable , arrays must be declares before they are used so that the compiler can allocate space for them in memory.

Syntax: datatype array-name [size];

The datatype specifies the type of element that will be contained in the array, such as int, float, or char and the size indicates the maximum number of elements that can be stored inside the array.

for ex: int group[10];

declares the group as an array to contain a maximum of 10 integer constatnts.

Initialization of one-dimensional arrays

After an array is declared, its elements must be initialized. Otherwise, they will contain “garbage”.
An array can be initialized in 2 ways.

a) compile time initialization

b) Runtime initialization
a) compile time initialization

We can initialize the elements of arrays in the same way as the ordinary variable when they are declared. The general form of initialization of array is:

 type array-name[size] = { list of values };

The values in the list are separated by commas. For example, the statement

int number[3] = { 0 , 0 , 0 };

will declare the variable number as an array of size 3 and will assign zero to each element.

b) Run time initialization

An array can be explicitly initialized at run time.
Program for runtime initialization and sequential access using for loop

main ()

{

int a[5],i;

clrscr ();

printf (“enter 5 elements”);

for (i=0; i<5; i++)

scanf(”%d”, &a[i]);

printf(“elements of the array are”);

for (i=0; i<5; i++)

printf(”%d ”, a[i]);

getch ();

}

output

enter 5 elements 10
20
30
40
50

elements of the array are :
10
20
30
40
50

4)Explain the following:

i) Array of pointers

ii) Malloc function.

Ans)

Arrays of pointers: (to strings)(or) Array of String

· It is an array whose elements are pointers to the base address of the string

· It is declared and initialized as follows

char *a[] = {“one”, “two”, “three”};

Here, a[0] is a pointer to the base address of the string “one”

a[1] is a pointer to the base address of the string “two”

a[2] is a pointer to the base address of the string “three”

	o
	n
	e
	\0
	t
	w
	o
	\0
	t
	h
	r
	e
	e
	\0

 1234
 1238

 1242

	a [0]
	1234

	a [1]
	1238

	a [2]
	1242

Array of pointers

Advantage :

· Unlink the two dimensional array of characters. In (array of strings), in array of pointers to strings there is no fixed memory size for storage.

· The strings occupy only as many bytes as required hence, there is no wastage of space.

ii) malloc ();

· This function is used for allocating a block of memory in bytes at runtime.

· It returns a void pointer, which points to the base address of allocated memory

· The allocated memory is not initialized ,so it will contain unknown values.

Syntax :

void *malloc (size in bytes)

The casting formate of malloc function is

 pointervarible=(type *) malloc(size)

to make portability ,the size is computed by using sizeof operator

Eg:

1) int *ptr;

 ptr = (int *) malloc (1000);

 2) int *ptr;

 ptr = (int *) malloc (n * sizeof (int));

Note : if the memory is not free, it returns NULL

5) Explain different forms of return statement?

6)****What are the storage classes available in c?

Storage classes

There are 4 storage classes (or) storage class specifiers supported in ‘C’ they are:

1) auto

2) extern

3) static

4) register

1. Automatic variables / Local variables.

Automatic variables are declared inside a function in which they are to be utilized. They are created when the function is called and destroyed automatically when the function is exited, hence the name automatic.
main()

{

auto int nimber;

}

2)External variables

They are also known as global variables. Unlike local variables, global variables can be accessed by any function in the program. External variables are declared outside a function.

Note: External variables should not be initialized.

For example

main()

{

y = 5;

}

int y; //global declaration

fun1()

{

y=y+1;

}
Static variables

The value of a static variable persists until the end of the program. A variable can be declared static using the keyword static like
static int x;

A static variable may be either an internal type or an external type depending on the place of declaration.

Register variables

Keyword : register

· Register variables values are stored in CPU registers rather than in memory where normal variables are stored.

· Registers are temporary storage units in CPU .

· The time required to access register value is less than values stored in memory.

· What are the categories of functions

7) What are the categories of functions?

Categories of functions:

· Depending on whether arguments are present (or) not and whether a value is returned (or) not, functions are categorized into:

1) functions without arguments and without return values

2) functions without arguments and with return values

3) Functions with arguments and without return values

4) Functions with arguments and with return values.

1) functions without arguments and without return values
	Calling function
	Analysis
	Called function

	main ()

{

 fun ();

 }
	No arguments are passed

No values are sent back
	fun ()

{

}

2) functions without arguments and with return values

	Calling function
	Analysis
	Called function

	main ()

{

 int ans;

 ans= fun ();

 }
	No arguments are passed

values are sent back
	fun ()

{

static int c;

 return c;

}

3) Functions with arguments and without return values

	Calling function
	Analysis
	Called function

	main ()

{

 fun (a,b);

}
	 Arguments are passed

No values are sent back
	fun (int a, int b)

{

}

4) Functions with arguments and with return values.

	Calling function
	Analysis
	Called function

	main ()

{

 int c;

 c= fun (a,b);

}
	Arguments are passed

 value are sent back
	fun (int a, int b)

{

 return c;

}

8) List some standard functions?

9)****What are the parameter passing techniques available in c (call by value and call by reference)?

Ans)

Downward flow:

5) The calling function sends data to the called function.

6) No data flows in opposite direction.

7) The called function may change the values passed,but the original values in calling function remain untouched i,e don't change values

8) The Pass-by-value mechanism in 'C' is an example for this downward communication;

9) In pass-by-value mechanism ,the calling function sends a copy of each value to the called function

UPWARD FLOW (OR) UPWARD COMMUNICATION.

· This communication occurs when the called function sends data back to the calling function.

· "Pass -by -reference "concept is implemented in "c" by means of UPWARD FLOW

· 'C' provides return statement to return one data item to the calling function.

· To pass multiple data items up to the calling function,we need to pass the address of the variables to the called function.

· To get the address of a variable we use address operator (&). Eg: If the variable in the calling function is x ,its address operator is (&x).
10)****Derive the expression for finding the address of any element of a 1-dimensional

 array?
the expression for finding the address of any element of a 1-dimensional array?

1-dimensional: int base[x];
address = base[index1];

	address = base + (index * sizeof(int));

11)What is meant by sorting? List various sorting algorithms?

Sorting : It is the process of arranging elements either in ascending (or) descending order.

Types : C language provides 5 sorting techniques

1) Bubble sort

(or)
Exchange Sort

1) Bubble sort(or)Exchange Sort
· It is the simplest sorting technique

· It is also called exchange sort
· Procedure:

1. compare the first element with the remaining elements in the list and exchange(swap) them if they are not in order.

2. Repeat the same for other elements in the list until all the elements gets sorted

	30
	50
	40
	10
	20

Consider the elements

	0
	1
	2
	3
	4

	30
	50
	40
	10
	20

Procedure for Bubble sort

for (i=0; i<n-1; i++)

{

for (j=i+1; j<n; j++)

{

if (a[i] > a[j])

{

t=a[i];

a[i] = a[j];

a[j] = t;

}

}

}1st pass : compare 1st element with remaining elements
a[0] > a[1]

30 >50 (F) no exchange

a[0] > a[2]

30 >40 (F) no exchange

a[0] > a[3]

30 >10 (T) exchange(swap elements at index 0 and 3)

a[0] > a[4]

10>20 (F) no exchange

After pass 1: elements are

	10
	50
	40
	30
	20

2nd Pass : Compare 2nd element with remaining elements

	0
	1
	2
	3
	4

	10
	20

50
	
40
	

30
	20

a[1] > a[2]

50 >40 (T) exchange (swap elements at index 1 and 2)

a[1] > a[3]

40 >30 (T) exchange(swap elements at index 1 and 3)

a[1] > a[4]

30 >20 (T) exchange(swap elements at index 1 and 4)

After pass 2: elements are

	10
	20
	50
	40
	30

3rd Pass : Compare 3rd element with remaining elements

	0
	1
	2
	3
	4

	10
	20
	30

50
	
40
	30

a[2] > a[3]

50 >40 (T) exchange(swap elements at index 2 and 3)

a[2] > a[4]

40 >30 (T) exchange(swap elements at index 2 and 4)

After pass 3: elements are

	10
	20
	30
	50
	40

4th Pass : Compare 4th element with remaining elements

	0
	1
	2
	3
	4

	10
	20
	30
	40

50
	50

40

a[3] > a[4]

50 >40 (T) exchange(swap element at index 3 and 4)

After pass 4: elements are

	10
	20
	30
	40
	50

12)What is meant by searching? List various searching algorithms
Searching

· Finding a key element among list of elements

· If the given element is present int the list then the searching process is said to be successful
· If the given element is not present int the list then the searching process is said to be unsuccessful

Types :

· C language provides two types of searching techniques. They are:

1) Linear search
2) Binary search

1) Linear Search

· Searching for the key element is done in a linear fashion

· It is the simplest searching technique

· It does not expect the list to be sorted.

· Limitation:

· It consumes more time and reduce the power of system

i/p : unsorted list of elements, key

o/p :
success – if key is found

unsuccess – otherwise

	0
	1
	2
	3
	4

	20
	50
	40
	30
	10

eg:
Key = 40

a[i] = = key

2)Binary Search

· This method can be applied only to sorted list.
· The given list is divide into two equal parts
· The given key is compared with the middle element of the list.
· 3 situations may occur:
· If the middle element matches the key then the search will end successfully here
· If the middle element is grater than the key then the search will proceed in the left partition
· If the middle element is lower than the key then the search will proceed int the right partition.
	10
	20
	30
	40
	50

	0
	1
	2
	3
	4

 i/p : unsorted list of elements, key

o/p :
success – if key is found

unsuccess – otherwise

 low

mid
 high

	0
	1

	10
	20

 key = 20

mid = (low +high) /2

low high

	20

 Low high

13)****Specify the time complexity of various sorting and searching algorithms in worst, average and best cases ?

Complexity of sorting techniques
Note: n represent number of elements
	Algorithm
	Worst Case
	Avg. case
	Best Case

	Bubble sort
	O(n2)
	O(n2)
	O(n2)

Complexity of searching techniques

	Algorithm
	Worst Case
	Avg. case
	Best Case

	Linear Search
	O(n)
	O(n)
	O(n)

	Binary Search
	O(log2n)
	O(log2n)
	O(n)

 UNIT-III

1. ****Demonstrate command-line arguments using a simple program? Explain?

Command line arguments :

· An executable program that performs a specific task for operating system is called as command

· These commands are issued from the command prompt of operating system.

· Some arguments are to be associated with the commands and hence these are called “ command” line arguments.

· For example like any other functions ,main() function may have the parameters and these parameters are called as "command-line arguments".

· The main function can receive two arguments namely

1) argc
----- argument count

2) argv

 argument vector

argc : It contains the total number of arguments passed from command prompt

argv : It is a pointer to an array of character strings which contains names of arguments. Each word is an argument

for eg :

c: |> sample. Exe
hello how are you

arguments

Here, argc = 5

argv[0] = sample.exe

argv[3] = are

argv[1] = hello

argv[4] = you

argv [2] = how

Program

main (int argc, char *argv[])

{

int i;

clrscr();

printf (“ no. of arguments given at command prompt = %d”, argc);

printf (“ arguments given at command prompt are \n”);

for (i = 1; i <argc; i++)

printf (”%s\n ”, argv[i]);

getch();

}

Output

Steps:

· compile the program

· Run the program

· Go to command prompt and give the input

c:|> sample.exe hello how are you.

No. of arguments given at command prompt is = 5

arguments given at command prompt are :

hello

How

2. Explain how strings are declared and initialized in ‘C’?
String:

 a string is a sequence of characters that is treated as a single data item.Any group of characters defined between double quatations marks is a string constant.

Declaration and initializing string variables:

 C does not support string as a data type .however it allows us to represent strings as character arrays.therefore string variable is any valid c variavle name and is always declared as an array of characters/

Declaration general form:

	 Char string_name[size];

Size determines the number of characters in the string_name. Examples

 char city[10];

 char name[30];

3).Differentiate between a pointer and a variable?
	Variable
	Pointer

	A variable stores normal value

	A pointer stores address of another variable.

	Syntax: datatype varName;
	Syntax: datatype *pointerName;

	Variable size varies based on data type
	Pointer size is constant

	Variable is used to directly access value
	Pointer is used to indirectly access value of variable

4).What do you mean by pointer to another pointer?

Pointer to pointer:

· Pointer to pointer is a variable that holds the address of another pointer.

· It is possible to make a pointer to point another pointer thus forming the chain of pointers as shown in the below figure.

Declaration

datatype ** pointer_name;

Eg : int **p;

p is a pointer to pointer

Initialization :

‘&’ is used for initialization

Eg:
int a = 10;

int *p;

int **q;

p = &a;

q =&p;

Accessing :

· Indirection operator (*) is used for accessing

5)****Explain the use of functions strcpy () and strcmp ()
. strcpy ()

· This function is used for copying source string into destination string

· The length of the destination string must be greater than (or) equal to that of the source string

Syntax:
strcpy (Destination string, Source String);

Eg:

1) char a[50];

2) char a[50];

strcpy (“Hello”,a);

 strcpy (a,”hello”);

o/p: error

 o/p: a= “Hello”

strcmp

· This function compares 2 strings

· It returns the ASCII difference of the first two non – matching characters in both the strings.

Syntax

int strcmp (string1, string2);

If the difference is equal to zero

string1 = string2

If the difference is positive

string1> string2

If the difference is negative

string1 <string2

eg:
	t
	h
	e
	r
	e
	\0

1) char a[10]= “there”

char b[10] = “their”

strcmp (a,b);

	t
	h
	e
	i
	r
	\0

Output: string1 >string2

6)Write a C function to find the length of a string passed as an argument?

int length(char s[]){

int i;

for(i=0; s[i]!=’\0’; ++i);

return i;

}
7)****Write a C program to swap two integers using functions?
void main(){

swap();

}

void swap(){

int a,b, t;

printf(“enter a and b:”);

scanf(“%d%d”,&a,&b);

t=a;

a=b;

b=t;

printf(“After swapping, a is %d, b is %d”,a,b);
}

8)How to pass the entire array as argument to functions?

· There are some predefined functions available in “ctype.h” library for analyzing the character input and converting them.

	Analysis functions

	Function
	Checks whether entered character is

	1. isalpha ()

2. isdigit ()

3. isspace ()

4. ispunct ()

5. islower ()

6. isupper ()

7. isalphanumeric()
	An alphabet (or) not

A digit (or) not

A space, a newline (or) tab

A special symbol (or) not

A lower case letter of alphabet

An upper case letter of alphabet

An alphabet/digit or not

	Converting functions

	Function
	

	tolower ()
	Converts an upper case alphabet to lower case

	toupper ()
	Converts a lower case alphabet to upper case

9)Explain string i/o functions?
string input functions:

string input functions are used to read string from input device.

the string input functions are:

· gets()

· scanf()

· fgets()

· getchar()

string output functions:

string output functions are used to write string to output device.

the string output functions are:

· puts()

· printf()

· fputs()

· putchar()

10)What are the preprocessor commands available in c?

Preprocessor commands

· ‘preprocessor’ is a program that processes the source code before it passes through the compiler

· It operates under the control of preprocessor directives which begin with the symbol #

· Can be placed any where in the program.

The preprocessor directives are broadly classified under three categories:

1) File inclusion directives/commands

2)Macro substitution directives/commands

3) conditional compilation commands

1) File inclusion directives:

An external file containing functions or macro definitions can be included as part of a program so that we need not rewrite those functions or macro definitions. This is achieved by the preprocessor directive

#include “filename”

 Or

#include <filename>

2)Macro substitution directives/commands

· It replaces every occurrence of the identifier by a predefined string.

Syntax for defining a macro

define identifier string

There are different forms of macro substitution. The most common forms are :

1) Simple macro substitution

2) Argumented macro substitution

3) Nested macro substitution

Undefining macros:

Once defined, macro command can’t be redefined. Any attempt to redefine leads to the compilation error. So to redefine a macro, so we must undefine it by using #undef command and define it again.

Ex:

#define SIZE 10

#undefine SIZE

#define SIZE 20

Predefined Macros:

 The macros which are predefined in C library are called as predefined macros.

	Command
	meaning

	--DATE--
	Provides String “mmm dd yyyy” formate

	--FILE--
	Provides String constant containing name of souce file

	--LINE--
	Provides interger constant,containing currect statement

	--TIME--
	Provides a string “hh: mm:ss” formate

	--STDC--
	Provides a integer constant with value 1 iff the compiler conforms with ISO implementation.

11) How to declare array of strings?

· It is an array whose elements are pointers to the base address of the string

· It is declared and initialized as follows

char *a[] = {“one”, “two”, “three”};

Here, a[0] is a pointer to the base address of the string “one”

a[1] is a pointer to the base address of the string “two”

a[2] is a pointer to the base address of the string “three”

	o
	n
	e
	\0
	t
	w
	o
	\0
	t
	h
	r
	e
	e
	\0

 1234
 1238

 1242

	a [0]
	1234

	a [1]
	1238

	a [2]
	1242

Array of pointers

Advantage :

· Unlink the two dimensional array of characters. In (array of strings), in array of pointers to strings there is no fixed memory size for storage.

· The strings occupy only as many bytes as required hence, there is no wastage of space.

12)Explain about memory allocation functions in C?

 Memory allocation functions

Memory allocation functions

Memory can be allocated in 2 ways :

 SHAPE * MERGEFORMAT

Static memory allocation:

· static memory allocation requires that the declaration and definition of memory should be specified in source program.

· If memory is allocated at compile time, it cannot be changed during execution. There will be a problem of either insufficiency or else wastage of memory.

· The solution is to create memory dynamically i.e. as per the requirement of the user during execution of program.

Dynamic memory allocation:

· It uses predefined functions to allocate and release memory for the data while program is running.

· It postpones the data definition,but not data declaration. Unlike static memory allocation,dynamic memory allocation does not have identifier,it has only an address that must be used to access it,therefore we must use pointers.

· The standard library functions used for dynamic memory management are:

· malloc ()

· calloc ()

· realloc ()

· free ()

1) malloc ();

· This function is used for allocating a block of memory in bytes at runtime.

· It returns a void pointer, which points to the base address of allocated memory

· The allocated memory is not initialized ,so it will contain unknown values.

Syntax :

void *malloc (size in bytes)

2) Calloc ():

· This function is used for allocating continuous blocks of memory at run time.

· This is especially designed for arrays

· It returns a void pointer which points to the base address of the allocated memory

Syntax : void *calloc (numbers of elements, size in bytes)

Eg:
1) int *ptr;

 ptr = (int *) calloc (500,2);

3. realloc () :

5) It is used for reallocating already allocated memory

6) It can either reduce (or) extend the allocated memory.

7) It returns a void pointer that points to the base address of reallocated memory

Syntax

void *realloc (pointer, newsize);

4. free ():

10) This function frees (or) deallocates previously allocated memory space..

11) With dynamic runtime allocation, it is our responsibility to release the space when it is not required for effective usage of memory.

Syntax

12) void *free (pointer);

UNIT-IV

1)****Briefly explain the type definition statement in ‘C’? Give any two examples.

 Typedef ;

13) ‘C’ allows to define new data type names using the ‘typedef’ keyword

14) Using ‘typedef’, user will not actually create a new data type but define a new name for an existing type.

Syntax :

typedef datatype newname;

eg :

typedef int
num;

int a;

num a;

· This statement tells the compiler to recognize ‘num’ as another name for ‘int’.

· ‘num’ is used to create another variable ‘a’ .

· ‘num a’declares ‘a’ as a variable of type ‘int’.

1) **** Differentiate between structures and unions?

Differences between structures and unions:

	structures
	unions

	1. Definition

Structure is heterogenous collection of data items grouped together under a single name
	1) Definition

A union is a memory location that is shared by several variables of different datatypes.

	2) syntax;

Struct tagname

{

 datatype member1;

 datatype member2;

};
	2) syntax;

union tagname

{

 datatype member1;

 Datatype member2;

};

	3). Eg:

 struct sample

 {

 int a;

 float b;

 char c;

 };
	3). Eg:

 union sample

 {

 int a;

 float b;

 char c;

 };

	4. Keyword : struct
	4. Keyword : union

	5 All members of a structure can be initialized when structure variable is declared.

 struct sample

 {

 int a;

 float b;

 char c;

 };

strut sample sa={10,20.5,'c'}; //VALID
	5.In union we can initialize only one member when union variable is declared

union sample

 {

 int a;

 float b;

 char c;

 };

union sample sa={10,20.5,'c'}; //invalid

union sample sa={10};//valid

	6Memory allocation:

Memory allocated is the sum of sizes of all the datatypes in structure .

Eg: let us suppose integer 'a' occupies 2 bytes ,float 'b' occupies 4 bytes and character 'c' occupies 1 byte. for above structure ,the compiler is going to allocate7 (2+4+1)bytes,which is sum of sizes of each member in structure
	6Memory allocation:

Memory allocated is the maximum size allocated among all the data types in union

 For above union compiler is going to allocate a memory of 4 bytes to union which is large enough to hold largest member in union

	 7.Memory is allocated for all the members of the structure differently
	 7.Only one member will be residing in the memory at any particular instance/

	
	

3) **** What do you mean by bit fields? How bit fields are different from structures?

Bit Fields

· These are used to change the order of allocation of memory from bytes to bits

· A bit field is a set of adjacent bits whose size can be from 1 to 16 bits in length

· There are occasions where data items require much less than 16 bits of space. In such cases memory will be wasted. Bit fields can pack several data items in a word of memory

Syntax

datatype name : bit – length;

5) The datatype can be either int (or) unsigned int (or) signed int.

6) Bit length specifies the number of bits

7) The largest value that can be stored is 2n – 1, where ‘n’ is bit length

4) How many possible ways one can access the members of a structure using a

structure variable and a pointer to a structure variable? Illustrate with examples.

Accessing member :

· The inner most member in a nested structure can be accessed by chaining all the concerned structure variables (from outer most to innter most) with the member using dot operator

Eg :

Outer structures members can be accessed by using outer_structure_variable.member

 ie s.sno and s.name

Inner structures members can be accessed by using

	outer_structure_variable. inner_structure_variale .member

i.e s.m.mid1 ,s.m.mid2 and s.m.mid3

Structure variables declaration

There are 3 ways of declaring structure variables

· struct book

{

int pages;

char author[30];

float price;

}b;

· struct

{

int pages;

char author[30];

float price;

}b;

· struct book

{

int pages;

char author[30];

float price;

};

struct book b;

i)Pointer to structures

Pointer to structure:

· It holds the address of the entire structure.

· Mainly these are used to create complex data structures such as linked lists, trees, graphs and so on.

· The members of the structure can be accessed using a special operator called arrow operator /selector operator(->) or indirectional operator(*)

Declaration

struct tagname *ptr;

Accessing ;

ptr->
membername; (or) (*ptr). Membername

Eg:

Struct Student* p;

 eg: p->sno, p->sname, p->marks (or)

 (*p).sno,(*p).sname,(*p).marks

5) ****Explain the Enumerated types.

Enumerated Data type

Enum is a user-defined enumerated data type supported by ANSI C.

It is defined as follows:

enum identifier { value1, value2, value3,…. Valuen };

The identifier is a user-defined enumerated data type which can be used to declare variables that can have on of the values enclosed within the braces(known as enumeration constants). After this definition we can declare variables to be of this new type as below:

Enum identifier v1, v2, v3, ……vn;

The enumerated variables v1, v2, …….vn can only have one of the values value1, value2, …….valuen. The assignments of the following types are valid:

V1 = value1;

V3 = value5;

The compiler automatically assigns integer digits beginning with 0 to all the enumeration constants. That is the enumeration constant value1 is assigned 0, value2 is assigned 1, and so on.

7) Explain the following with examples:

 a) Pointers to structures b) Self referential structures. c) Unions d) Typedef

A) i)Pointer to structures

Pointer to structure:

· It holds the address of the entire structure.

· Mainly these are used to create complex data structures such as linked lists, trees, graphs and so on.

· The members of the structure can be accessed using a special operator called arrow operator /selector operator(->) or indirectional operator(*)

Declaration

struct tagname *ptr;

Accessing ;

ptr->
membername; (or) (*ptr). Membername

Eg:

Struct Student* p;

 eg: p->sno, p->sname, p->marks (or)

 (*p).sno,(*p).sname,(*p).marks

C) Union of structures

· A structure can be nested inside a union and it is called union of structures

· It is also possible to create a union inside a structure

Program

#include<stdio.h>

void main()

{

union uni

{

struct std

{

 int age;

 int sno;

 }s;

 }u;

 printf("enter age and serial number");

 scanf("%d %d",&u.s.age,&u.s.sno);

printf("\n student age is:%d",u.s.age);

printf("\n serial number is:%d",u.s.sno);

getch();

return;

}

Output

 enter age and serial number 20 560

student age is:20

serial number is:50

D) Typedef ;

15) ‘C’ allows to define new data type names using the ‘typedef’ keyword

16) Using ‘typedef’, user will not actually create a new data type but define a new name for an existing type.

Syntax :

typedef datatype newname;

eg :

typedef int
num;

int a;

num a;

· This statement tells the compiler to recognize ‘num’ as another name for ‘int’.

· ‘num’ is used to create another variable ‘a’ .

· ‘num a’declares ‘a’ as a variable of type ‘int’.

UNIT-V

1) **** List and explain Streams functions of text files along with their prototypes.

(OR)

2)List and Explain file input output functions

STREAMS:

Stream : flow of data from one place to another place. A stream can be associated with physical devices such as terminal, or with a file stored in auxiliary memory.

C uses two types of streams: text and binary.

 A text stream consists of a sequence of characters divided into lines with each line terminated by a new line(\n).

A binary stream consists of a sequence of data values such as integer, real or complex using their representation.

scanf()

printf ()

2) I/0 functions:

1) high level I/o
· These are easily understood by human beings

· Advantage: portability.

2) Low level I/o

· These are easily understood by computer

· Advantages. Execution time is less

· Disadvantage: Non portability

 High level I/o Functions
Function Name

Operation

	fopen()

fclose()

getc ()
putc ()
getw()

putw()

fprintf()

fscanf()

fseek()

ftell()

rewind()
	Creates a new file for use

Opens an existing file for use

Closes a file which has been opened for use

Reads a character from a file.

Writes a character to a file

Reads an integer from a file.

Writes an integer to a file.

Writes a set of data values to a file.
Reads a set of data values from a file.

Sets the position to a desired point in the file

Gives the current position in the file.

Sets the position to the beginning of the file.

Character input/output functions

Character input functions read one character at a time from a text stream.

Character output functions write one character at the time to a text stream.

These functions can be divided into two general groups:

· input/output functions used exclusively with a terminal device and

· input/output functions that can be used with both terminal devices and text files.

Terminal character I/O

C declares a set of characters input/output functions that can only be used with the standard streams: standard input(stdin) and standard output(stdout)

getchar()

The getchar function reads a character from the standard input stream and returns its value.

Syntax:
int getchar(void);

Note that the return type is an integer and not a character.

If the end of file condition results, or if an error is detected, the function return EOF. EOF is defined as integer(int) in the standard definition stddef.h

putchar()

The putchar function writes one character to the monitor. If any error occurs during the write operation, it returns EOF.

Syntax:
int putchar(char out_char);

Terminal and file character I/O

These functions can be used with both the standard streams and files. These functions require an argument that specifies the stream associated with a terminal device or a file.

1. When used with a terminal device, the streams are declared and opened by the system- the standard input stream(stdin) for the keyboard and the standard output stream(stdout)for the monitor.
2.When used with a file, we need to explicitly declare the stream. It is our responsibility to open the stream and associate it with the file.

getc() /fgetc()

The getc function reads a character from the file stream, which can be a user-defined stream or stdin, and convert it to an integer. If the read detects an end of file, the function returns EOF. EOF is also returned if any error occurs.

The function prototypes are

int getc(FILE* fp);

int fgetc(FILE * fp);

putc()/fputc()

The put function writes a character to the file stream specified, which can be user-defined stream, stdout or stderr. For putc, the first parameter is the character to be written and the second parameter is the file. If the character is successfully written, the function return it. If any error occurs, they return EOF.

The function prototypes are

int putc(int one-char, FILE *fp);

int fputc(int one-char, FILE * fp);

putc() and getc() functions:

1) putc (): It is used for writing a character into a file

Syntax :

putc (char ch, FILE *fp);

Eg :
FILE *fp;

char ch;

putc(ch, fp);

2) getc () : It is used to read a character from file

Syntax :

char getc (FILE *fp);

Eg:
FILE *fp;

char ch;

ch = getc(fp);

3) What is a file? How to open and close different types of files in ‘C’?

Defining and opening a file

Data structure of a file is defined as FILE in the library of standard I/O function definitions. Therefore, all files should be declared as type FILE before they are used. FILE is a defined data type.

Syntax: FILE *File_pointer;

 Eg : FILE * fp;
When we open a file, we must specify what we want to do with the file. For example, we may write data to the file or read the already existing data.
 Syntax: File_ pointer = fopen (“File name”, “mode”);
Eg : fp = fopen (“sample. txt”, “w”);

FILE *fp;

fp = fopen (“sample.txt”, “w”);

Modes of the opening the file :

r
-
File is opened for reading

w
-
File is opened for writing

a
-
File is opened for appending (adding)

r+
-
File is opened for both reading & writing

w+
-
File is opened for both writing & reading

a+
-
File is opened for appending & reading

rt
-
text file is opened for reading

wt
-
text file is opened for writing

at
-
text file is opened for appending

r+t
-
text file is opened for reading & writing

w+t
-
text file is opened for both writing & reading

a+t
-
text file is opened for both appending & reading

rb
-
binary file is opened for reading

wb
-
binary file is opened for writing

ab
-
binary file is opened for appending

r+b
-
binary file is opened for both reading & writing

w+b
-
binary file is opened for both writing & reading

a+b
-
binary file is opened for both appending & reading.

1) Write mode of opening the file
The write mode (w) opens a file for writing.

FILE *fp;

fp =fopen (“sample txt”, “w”);

a) If the file does not exist then a new file will be created

b) If the file exists then old content gets erased & current content will be stored.

2. Read mode of opening the file:
The read mode (r) opens an existing file for reading. When a file is opened in this mode, the file pointer is positioned at the beginning of the file(the first character).

FILE *fp

fp =fopen (“sample txt”, “r”);

a) If the file does not exists, then fopen function returns NULL value.

b) If the file exists then data is read from the file.

3. Append mode of opening a file
The append mode (a) also opens an existing file for writing. New data are added or appended, at the end of the file.

FILE *fp;

fp =fopen (“sample txt”, “a”);

a) If the file doesn’t exists, then a new file will be created.

b) If the file exists, the current content will be appended to the old content
Closing a File
A file must be closed as soon as all operations on it have been completed. This ensures that all outstanding information associated with the file is flushed from the buffers and all links to the files are broken. A file is closed using the close function, fclose .

Syntax: fclose(file_pointer);

Open and close errors:
Open and close errors occur for a number of reasons. One of the most common errors occurs

· when the external file in the open function call does not match a name on the disk.

· When we create a new file, the open fails if there is not enough room on the disk.
Always check to make sure that a stream has opened successfully. If a file is opened successfully, we have a valid address in the file pointer variable. But if it failed for any reason,the file pointer variable contains NULL, which is a C-defined constant for no address in stdio.h

FILE *fp;

fp=fopen(“sample.txt”, “r”);

if(fp==NULL)

Printf(“Error in opening file”);

Similarly we can test the return value from the close to make sure it succeeded. The fclose function returns an integer that is zero if the file close succeeds and EOF if there is an error.

if(fclose(fp) == EOF)

printf(“Error in closing a file”);
4) Differentiate between fprintf and fwrite statements. When do you prefer to use fwrite instead of fprintf ?
1) fprint f()

Syntax : fprintf (filepointer, “ control string”, variable list)

Eg:
FILE *fp;

fprintf (fp, “%d%c”, a,b);

2)fscanf ()

Syntax : (filepointer, “control string”, & variable list)

Eg:
FILE *fp;

fscanf (fp, “%d%c”, &a,&b);

fwrite () : It is used for writing an entire record at a time.

Syntax : fwrite(& structure variable , size of structure variable, no of records, file pointer);

Eg : struct emp

{

int eno:

char ename [30];

float sal;

} e;

FILE *fp;

fwrite (&e, sizeof(e), 1, fp);
5)List and explain the streams functions for binary files along with their prototypes.

2.Binary file :

As the name suggests, a binary file stores the information in the binary form, i.e in the same format as it is stored in the memory. Thus, the use of binary file eliminates the need of data conversion from text to binary format for storage purpose. However one of the drawbacks of binary files is that the data stored in a binary file is not human understandable form.

Examples of binary files include .exe files, video stream files, image files, etc.

· Based on the data that is accessed, files are classified in to
(1) Sequential files
(2) Random access files

(1) Sequential files: Data is stored and retained in a sequential manner.

(2) Random access Files : Data is stored and retrieved in a random way.
6)****Explain the different modes that can be provided as a parameter to the fopen() function.

Defining and opening a file

Data structure of a file is defined as FILE in the library of standard I/O function definitions. Therefore, all files should be declared as type FILE before they are used. FILE is a defined data type.

Syntax: FILE *File_pointer;

 Eg : FILE * fp;
When we open a file, we must specify what we want to do with the file. For example, we may write data to the file or read the already existing data.
 Syntax: File_ pointer = fopen (“File name”, “mode”);
Eg : fp = fopen (“sample. txt”, “w”);

FILE *fp;

fp = fopen (“sample.txt”, “w”);

Modes of the opening the file :

r
-
File is opened for reading

w
-
File is opened for writing

a
-
File is opened for appending (adding)

r+
-
File is opened for both reading & writing

w+
-
File is opened for both writing & reading

a+
-
File is opened for appending & reading

rt
-
text file is opened for reading

wt
-
text file is opened for writing

at
-
text file is opened for appending

r+t
-
text file is opened for reading & writing

w+t
-
text file is opened for both writing & reading

a+t
-
text file is opened for both appending & reading

rb
-
binary file is opened for reading

wb
-
binary file is opened for writing

ab
-
binary file is opened for appending

r+b
-
binary file is opened for both reading & writing

w+b
-
binary file is opened for both writing & reading

a+b
-
binary file is opened for both appending & reading.

1) Write mode of opening the file
The write mode (w) opens a file for writing.

FILE *fp;

fp =fopen (“sample txt”, “w”);

a) If the file does not exist then a new file will be created

b) If the file exists then old content gets erased & current content will be stored.

2. Read mode of opening the file:
The read mode (r) opens an existing file for reading. When a file is opened in this mode, the file pointer is positioned at the beginning of the file(the first character).

FILE *fp

fp =fopen (“sample txt”, “r”);

a) If the file does not exists, then fopen function returns NULL value.

b) If the file exists then data is read from the file.

3. Append mode of opening a file
The append mode (a) also opens an existing file for writing. New data are added or appended, at the end of the file.

FILE *fp;

fp =fopen (“sample txt”, “a”);

a) If the file doesn’t exists, then a new file will be created.

b) If the file exists, the current content will be appended to the old content
7) What is the purpose of the ferror() and feof() functions?

1. ferror ()

It is used for detecting an error while performing read / write operations.

Syntax :

int ferror (file pointer);

eg :
FILE *fp;

if (ferror (fp))

prints (“error has occurred”);

 it returns zero if success and a non _ zero otherwise.

2. perror ()

 It is used for printing an error.

Syntax :

perror (string varable);

Eg :
FILE *fp;

char str[30] = ”Error is”

perror (str);

O/P : Error is : error 0

feof ()

It is used for checking whether end of the file has been reached (or) not.

Syntax :

 int feof (file pointer);

Eg :
FILE *fp;

if (feof (fp))

printf (“reached end of the file”);

 If returns a non zero if success and zero otherwise.

8)Differentiate between a)fprintf and fwrite statements.

 b) getc() and getchar() functions

(a) 1) fprint f()

Syntax : fprintf (filepointer, “ control string”, variable list)

Eg:
FILE *fp;

fprintf (fp, “%d%c”, a,b);

2)fscanf ()

Syntax : (filepointer, “control string”, & variable list)

Eg:
FILE *fp;

fscanf (fp, “%d%c”, &a,&b);

fwrite () : It is used for writing an entire record at a time.

Syntax : fwrite(& structure variable , size of structure variable, no of records, file pointer);

Eg : struct emp

{

int eno:

char ename [30];

float sal;

} e;

FILE *fp;

fwrite (&e, sizeof(e), 1, fp);

b) getc() /fgetc()

The getc function reads a character from the file stream, which can be a user-defined stream or stdin, and convert it to an integer. If the read detects an end of file, the function returns EOF. EOF is also returned if any error occurs.

The function prototypes are

int getc(FILE* fp);

int fgetc(FILE * fp);

putc()/fputc()

The put function writes a character to the file stream specified, which can be user-defined stream, stdout or stderr. For putc, the first parameter is the character to be written and the second parameter is the file. If the character is successfully written, the function return it. If any error occurs, they return EOF.

The function prototypes are

int putc(int one-char, FILE *fp);

int fputc(int one-char, FILE * fp);

getchar()

The getchar function reads a character from the standard input stream and returns its value.

Syntax:
int getchar(void);

Note that the return type is an integer and not a character.

If the end of file condition results, or if an error is detected, the function return EOF. EOF is defined as integer(int) in the standard definition stddef.h

8) Explain what a text file is and what a binary file is.

Binary file :
As the name suggests, a binary file stores the information in the binary form, i.e in the same format as it is stored in the memory. Thus, the use of binary file eliminates the need of data conversion from text to binary format for storage purpose. However one of the drawbacks of binary files is that the data stored in a binary file is not human understandable form.

Examples of binary files include .exe files, video stream files, image files, etc.

· Based on the data that is accessed, files are classified in to

(1) Sequential files

(2) Random access files

(1) Sequential files: Data is stored and retained in a sequential manner.

(2) Random access Files : Data is stored and retrieved in a random way.

Operations on files : 1. Naming the file

2. Opening the file

3. Reading from the file

4. Writing into the file

5. Closing the file

Defining and opening a file

Data structure of a file is defined as FILE in the library of standard I/O function definitions. Therefore, all files should be declared as type FILE before they are used. FILE is a defined data type.

Syntax: FILE *File_pointer;

 Eg : FILE * fp;
When we open a file, we must specify what we want to do with the file. For example, we may write data to the file or read the already existing data.
 Syntax: File_ pointer = fopen (“File name”, “mode”);
Eg : fp = fopen (“sample. txt”, “w”);

FILE *fp;

fp = fopen (“sample.txt”, “w”);

Modes of the opening the file :

r
-
File is opened for reading

w
-
File is opened for writing

a
-
File is opened for appending (adding)

r+
-
File is opened for both reading & writing

w+
-
File is opened for both writing & reading

a+
-
File is opened for appending & reading

rt
-
text file is opened for reading

wt
-
text file is opened for writing

at
-
text file is opened for appending

r+t
-
text file is opened for reading & writing

w+t
-
text file is opened for both writing & reading

a+t
-
text file is opened for both appending & reading

rb
-
binary file is opened for reading

wb
-
binary file is opened for writing

ab
-
binary file is opened for appending

r+b
-
binary file is opened for both reading & writing

w+b
-
binary file is opened for both writing & reading

a+b
-
binary file is opened for both appending & reading.

9)Explain the general format of fseek() function with illustrative examples?
1. fseek ()

It is used to make the file pointer point to a particular location in a file.

Syntax: fseek(file pointer,offset,position);
offset :

· The no of postitions to be moved while reading or writing.

· If can be either negative (or) possitve.

 Possitive - forward direction.

 Negative – backward direction .

position :

· it can have 3 values.

0 – Beginning of the file

1 – Current position

2 – End of the file

Eg :

1. fseek (fp,0,2) - fp is moved o bytes forward from the end of the file.

2. fseek (fp, 0, 0) – fp is moved o bytes forward from beginning of the file

3. fseek (fp, m, 0) – fp is moved m bytes forward from the beginning of the file.

4. fseek (fp, -m, 2) – fp is moved m bytes backward from the end of the file.

Errors :

1. fseek (fp, -m, 0);

2. fseek(fp, +m, 2);
Forward jump

Initialization;

	while (condition)

	{

		Statements;

 Increment/decrement statement;

	}

Initialization;

do

	{

	Statements;

	increment/ decrement statement;

 } while (condition);	

exp1 ? exp2 : exp3;

Storing / assigning values to element of an array

Accessing the elements of the aray

10

30

30

40

50

30

40

40

40

50

a�
�
�
�
10�
�
1234�
�
�
�

P�
�
�
�
1234�
�
5000�
�
�
�

q�
�
�
�
5000�
�

Memory allocation

Static

(at compile time)

Dynamic

(at run time)

Note : Tagname can be ignored if the variable is declared of the time of defining structure

‘C’

Program

Keyboard

Monitor

Input stream

Output stream

putc ()

getchar ()

file

Monitor

Keyboard

getc ()

putchar ()

COMPUTER PROGRAMMING IN C
Page 62

